
## Carolina Aliaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3042761/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Insights into the electronic structure of Fe penta-coordinated complexes. Spectroscopic examination and electrochemical analysis for the oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2021, 9, 23802-23816.                           | 10.3 | 27        |
| 2  | Influence of the Nill/Mnll ratio on the physical properties of heterometallic Ni2xMn(2â^'2x)P2S6 phases<br>and potassium intercalates K0.8Ni2xMn(1.6â^'2x)P2S6·2H2O. New Journal of Chemistry, 2021, 45, 2175-2183.                                                         | 2.8  | 0         |
| 3  | A simple method to estimate the mean number of lipophilic molecules on nanoparticle surfaces by fluorescence measurements. Nanotechnology, 2021, 32, 315711.                                                                                                                | 2.6  | 0         |
| 4  | Interfacial kinetics in olive oil-in-water nanoemulsions: Relationships between rates of initiation of<br>lipid peroxidation, induction times and effective interfacial antioxidant concentrations. Journal of<br>Colloid and Interface Science, 2021, 604, 248-259.        | 9.4  | 20        |
| 5  | Reactivity of 4â€pyrimidyl Sulfonic Esters in Suzukiâ€Miyaura Crossâ€Coupling Reactions in Water Under<br>Microwave Irradiation. ChemistrySelect, 2021, 6, 12858-12861.                                                                                                     | 1.5  | 1         |
| 6  | Influence of cyano substituents on the electron density and catalytic activity towards the oxygen<br>reduction reaction for iron phthalocyanine. The case for Fe(II)<br>2,3,9,10,16,17,23,24-octa(cyano)phthalocyanine. Electrochemistry Communications, 2020, 118, 106784. | 4.7  | 20        |
| 7  | Synthesis and evaluation of new heteroaryl nitrones with spin trap properties. RSC Advances, 2020, 10, 40127-40135.                                                                                                                                                         | 3.6  | 1         |
| 8  | Oxygen Reduction Reaction at Penta-Coordinated Co Phthalocyanines. Frontiers in Chemistry, 2020, 8, 22.                                                                                                                                                                     | 3.6  | 37        |
| 9  | A comparison of multiparametric methods for the interpretation of solvent-dependent chemical processes. Journal of Molecular Liquids, 2020, 312, 113362.                                                                                                                    | 4.9  | 14        |
| 10 | Interaction of Nitroxide Radicals with an Au <sub>8</sub> Nanostructure: Theoretical and Calorimetric Studies. Journal of Physical Chemistry C, 2019, 123, 21713-21720.                                                                                                     | 3.1  | 4         |
| 11 | Solvatofluorochromism of conjugated 4-methoxyphenyl-Pyridinium electron donor-acceptor pairs.<br>Dyes and Pigments, 2019, 166, 395-402.                                                                                                                                     | 3.7  | 6         |
| 12 | In search of the most active MN4 catalyst for the oxygen reduction reaction. The case of perfluorinated Fe phthalocyanine. Journal of Materials Chemistry A, 2019, 7, 24776-24783.                                                                                          | 10.3 | 52        |
| 13 | The inverted solvatochromism of protonated ferrocenylethenyl-pyrimidines: the first example of the<br>solvatochromic reversal of a hybrid organic/inorganic dye. Organic Chemistry Frontiers, 2019, 6,<br>3896-3901.                                                        | 4.5  | 16        |
| 14 | The location of amphiphobic antioxidants in micellar systems: The diving-swan analogy. Food<br>Chemistry, 2019, 279, 288-293.                                                                                                                                               | 8.2  | 9         |
| 15 | On the interactions of TEMPO radicals with gold nanostructures. New Journal of Chemistry, 2018, 42, 9764-9770.                                                                                                                                                              | 2.8  | 5         |
| 16 | Solvatochromism of conjugated 4- <i>N</i> , <i>N</i> -dimethylaminophenyl-pyridinium donor–acceptor<br>pairs. New Journal of Chemistry, 2018, 42, 4223-4231.                                                                                                                | 2.8  | 15        |
| 17 | Antioxidant-spotting in micelles and emulsions. Food Chemistry, 2018, 245, 240-245.                                                                                                                                                                                         | 8.2  | 5         |
| 18 | Visualization of Phase-Transfer Catalysis through Charge-Transfer Complexes. Journal of Chemical<br>Education, 2018, 95, 1631-1635.                                                                                                                                         | 2.3  | 5         |

CAROLINA ALIAGA

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Solvatofluorochromism of 2,4,6â€Triarylpyrimidine Derivatives. Photochemistry and Photobiology, 2018, 94, 1100-1108.                                                                                        | 2.5 | 21        |
| 20 | Cut-off effect of radical TEMPO derivatives in olive oil-in-water emulsions. Food Chemistry, 2017, 224, 342-346.                                                                                                | 8.2 | 6         |
| 21 | Influence of the lanthanide(iii) ion in {[Cu3Ln2(oda)6(H2O)6]·nH2O}n (LnIII: La, Gd, Yb) catalysts on the heterogeneous oxidation of olefins. Catalysis Science and Technology, 2017, 7, 231-242.               | 4.1 | 13        |
| 22 | Hydroxyl Radical Generation and DNA Nuclease Activity: A Mechanistic Study Based on a<br>Surfaceâ€Immobilized Copper Thioether Clipâ€Phen Derivative. Chemistry - A European Journal, 2016, 22,<br>10081-10089. | 3.3 | 23        |
| 23 | The effect of micellization on the EPR spectra and reactivity of 2,2,4,4-tetramethylpiperidinoxyl (TEMPO) radicals. Magnetic Resonance in Chemistry, 2016, 54, 870-873.                                         | 1.9 | 4         |
| 24 | "Cut-off―effect of antioxidants and/or probes of variable lipophilicity in microheterogeneous media.<br>Food Chemistry, 2016, 206, 119-123.                                                                     | 8.2 | 9         |
| 25 | Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. Food Chemistry, 2016, 192, 395-401.                                                                                          | 8.2 | 35        |
| 26 | RAMAN AND SURFACE ENHANCED RAMAN SIGNALS OF THE SENSOR<br>1-(4-MERCAPTOPHENYL)-2,4,6-TRIPHENYLPYRIDINIUM PERCHLORATE. Journal of the Chilean Chemical<br>Society, 2015, 60, 2944-2948.                          | 1.2 | 5         |
| 27 | A single theoretical descriptor for the bond-dissociation energy of substituted phenols. Journal of<br>Molecular Modeling, 2015, 21, 12.                                                                        | 1.8 | 7         |
| 28 | TEMPO-Attached Pre-fluorescent Probes Based on Pyridinium Fluorophores. Journal of Fluorescence, 2015, 25, 979-983.                                                                                             | 2.5 | 11        |
| 29 | Mechanism of fluorophore quenching in a pre-fluorescent nitroxide probe: A theoretical illustration. Chemical Physics Letters, 2014, 593, 89-92.                                                                | 2.6 | 18        |
| 30 | Change of mechanism with a change of substituents for a Zincke reaction. Tetrahedron Letters, 2014,<br>55, 3097-3099.                                                                                           | 1.4 | 5         |
| 31 | Ferromagnetic resonance investigation in permalloy magnetic antidot arrays on alumina nanoporous membranes. Journal of Magnetism and Magnetic Materials, 2014, 350, 88-93.                                      | 2.3 | 11        |
| 32 | Angular dependence of hysteresis shift in oblique deposited ferromagnetic/antiferromagnetic coupled bilayers. Journal of Applied Physics, 2014, 116, 033910.                                                    | 2.5 | 9         |
| 33 | EPR spectrum of a radical from a nontypical antioxidant. Magnetic Resonance in Chemistry, 2014, 52, 409-411.                                                                                                    | 1.9 | 3         |
| 34 | Special Issue Dedicated to the Memory of Elsa Beatriz Abuin Saccomano (1942–2012). Photochemistry<br>and Photobiology, 2013, 89, 1270-1272.                                                                     | 2.5 | 1         |
| 35 | A simple method for the determination of the partitioning of nitroxide probes in microheterogeneous media. Magnetic Resonance in Chemistry, 2012, 50, 779-783.                                                  | 1.9 | 13        |
| 36 | Distribution and reactivity of gallates toward galvinoxyl radicals in SDS micellar solutions—ÂEffect<br>of the alkyl chain length. Canadian Journal of Chemistry, 2011, 89, 181-185.                            | 1.1 | 4         |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Exchange Interactions Through π–π Stacking in the Lamellar Compound<br>[{Cu(bipy)(en)}{Cu(bipy)(H <sub>2</sub> 0)}{VO <sub>3</sub> } <sub>4</sub> ] <sub><i>n</i></sub> .<br>Inorganic Chemistry, 2011, 50, 11461-11471. | 4.0 | 19        |
| 38 | Sensing different micellar microenvironments with solvatochromic dyes of variable lipophilicity.<br>Dyes and Pigments, 2011, 90, 219-224.                                                                                | 3.7 | 6         |
| 39 | The thermochromism of the ET(30) betaine in a micro-heterogeneous medium: A spectral and dynamics simulation study. Journal of Colloid and Interface Science, 2010, 349, 565-570.                                        | 9.4 | 10        |
| 40 | Magnetic and catalytic properties of the 2D copper(II) functionalized VPO hybrid system<br>[{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O. Polyhedron, 2010, 29, 2426-2434.                                                         | 2.2 | 12        |
| 41 | How meaningful is the assessment of antioxidant activities in microheterogeneous media?. Food<br>Chemistry, 2009, 113, 1083-1087.                                                                                        | 8.2 | 26        |
| 42 | A new dual probe for hydrogen abstraction. Tetrahedron, 2009, 65, 6025-6028.                                                                                                                                             | 1.9 | 14        |
| 43 | Hydrogen-Transfer Reactions from Phenols to TEMPO Prefluorescent Probes in Micellar Systems.<br>Organic Letters, 2008, 10, 2147-2150.                                                                                    | 4.6 | 45        |
| 44 | Generation, Spectroscopic Characterization by EPR, and Decay of a Pyranineâ€Derived Radical. Helvetica<br>Chimica Acta, 2007, 90, 2009-2016.                                                                             | 1.6 | 5         |
| 45 | Symposium-in-Print in Honor of Eduardo A. Lissi Introduction. Photochemistry and Photobiology, 2007, 83, 471-474.                                                                                                        | 2.5 | 1         |
| 46 | Transient Enol Isomers of Dibenzoylmethane and Avobenzone as Efficient Hydrogen Donors toward a<br>Nitroxide Pre-fluorescent Probeâ€. Photochemistry and Photobiology, 2007, 83, 481-485.                                | 2.5 | 38        |
| 47 | Magnetic Field Control of Photoinduced Silver Nanoparticle Formation. Journal of Physical Chemistry B, 2006, 110, 12856-12859.                                                                                           | 2.6 | 52        |
| 48 | Solvent Effects on Hydrogen Abstraction Reactions from Lactones with Antioxidant Properties.<br>Organic Letters, 2005, 7, 3665-3668.                                                                                     | 4.6 | 38        |
| 49 | Fluorescence sensor applications as detectors for DNA damage, free radical formation, and in microlithography. Pure and Applied Chemistry, 2005, 77, 1009-1018.                                                          | 1.9 | 17        |
| 50 | Clean Photochemical Synthesis Mediated by Radicalâ^'Radical Reactions:  Radical Buffer or the<br>Persistent Free Radical Effect?. Organic Letters, 2005, 7, 4979-4982.                                                   | 4.6 | 26        |
| 51 | Bond Dissociation Energies for Radical Dimers Derived from Highly Stabilized Carbon-Centered Radicals. Organic Letters, 2004, 6, 2579-2582.                                                                              | 4.6 | 119       |
| 52 | Comparison of the free radical scavenger activities of quercetin and rutin — An experimental and theoretical study. Canadian Journal of Chemistry, 2004, 82, 1668-1673.                                                  | 1.1 | 29        |
| 53 | Reactivity toward Oxygen of Isobenzofuranyl Radicals:  Effect of Nitro Group Substitution. Organic<br>Letters, 2003, 5, 1515-1518.                                                                                       | 4.6 | 40        |
| 54 | Generation and Reactivity Toward Oxygen of Carbon-Centered Radicals Containing Indane, Indene, and<br>Fluorenyl Moieties ChemInform, 2003, 34, no.                                                                       | 0.0 | 0         |

CAROLINA ALIAGA

| #  | Article                                                                                                                                                                                                                      | IF  | CITATION |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| 55 | Generation and Reactivity toward Oxygen of Carbon-Centered Radicals Containing Indane, Indene, and Fluorenyl Moieties. Journal of Organic Chemistry, 2003, 68, 3199-3204.                                                    | 3.2 | 45       |
| 56 | A New Method to Study Antioxidant Capability:  Hydrogen Transfer from Phenols to a Prefluorescent<br>Nitroxide. Organic Letters, 2003, 5, 4145-4148.                                                                         | 4.6 | 57       |
| 57 | Kinetics and Mechanism of the Reaction of a Nitroxide Radical (Tempol) With a Phenolic Antioxidant.<br>Free Radical Research, 2003, 37, 225-230.                                                                             | 3.3 | 14       |
| 58 | Greatly attenuated reactivity of nitrile-derived carbon-centered radicals toward oxygen. Chemical Communications, 2002, , 1576-1577.                                                                                         | 4.1 | 54       |
| 59 | Formation and decay of the ABTS derived radical cation: A comparison of different preparation procedures. International Journal of Chemical Kinetics, 2002, 34, 659-665.                                                     | 1.6 | 37       |
| 60 | Reactions of the radical cation derived from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)<br>(ABTS <sup>·+</sup> ) with amino acids. Kinetics and mechanism. Canadian Journal of Chemistry, 2000,<br>78, 1052-1059. | 1.1 | 69       |
| 61 | A comparison of methods employed to evaluate antioxidant capabilities. Biological Research, 2000, 33, 71-7.                                                                                                                  | 3.4 | 48       |