Carolina Aliaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3042761/publications.pdf

Version: 2024-02-01

331670 377865 1,327 63 21 34 citations h-index g-index papers 64 64 64 1480 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bond Dissociation Energies for Radical Dimers Derived from Highly Stabilized Carbon-Centered Radicals. Organic Letters, 2004, 6, 2579-2582.	4.6	119
2	Reactions of the radical cation derived from 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS < $\frac{1}{2}$ (ABTS < $\frac{1}{2}$) with amino acids. Kinetics and mechanism. Canadian Journal of Chemistry, 2000, 78, 1052-1059.	1.1	69
3			

#	Article	IF	CITATIONS
19	Clean Photochemical Synthesis Mediated by Radicalâ^'Radical Reactions:  Radical Buffer or the Persistent Free Radical Effect?. Organic Letters, 2005, 7, 4979-4982.	4.6	26
20	How meaningful is the assessment of antioxidant activities in microheterogeneous media?. Food Chemistry, 2009, 113, 1083-1087.	8.2	26
21	Hydroxyl Radical Generation and DNA Nuclease Activity: A Mechanistic Study Based on a Surfaceâ€Immobilized Copper Thioether Clipâ€Phen Derivative. Chemistry - A European Journal, 2016, 22, 10081-10089.	3.3	23
22	The Solvatofluorochromism of 2,4,6â€Triarylpyrimidine Derivatives. Photochemistry and Photobiology, 2018, 94, 1100-1108.	2.5	21
23	Influence of cyano substituents on the electron density and catalytic activity towards the oxygen reduction reaction for iron phthalocyanine. The case for Fe(II) 2,3,9,10,16,17,23,24-octa(cyano)phthalocyanine. Electrochemistry Communications, 2020, 118, 106784.	4.7	20
24	Interfacial kinetics in olive oil-in-water nanoemulsions: Relationships between rates of initiation of lipid peroxidation, induction times and effective interfacial antioxidant concentrations. Journal of Colloid and Interface Science, 2021, 604, 248-259.	9.4	20
25	Exchange Interactions Through π–π Stacking in the Lamellar Compound [{Cu(bipy)(en)}{Cu(bipy)(H ₂ O)}{VO ₃ } ₄] _{<i>n Inorganic Chemistry, 2011, 50, 11461-11471.</i>}	4.0	19
26	Mechanism of fluorophore quenching in a pre-fluorescent nitroxide probe: A theoretical illustration. Chemical Physics Letters, 2014, 593, 89-92.	2.6	18
27	Fluorescence sensor applications as detectors for DNA damage, free radical formation, and in microlithography. Pure and Applied Chemistry, 2005, 77, 1009-1018.	1.9	17
28	The inverted solvatochromism of protonated ferrocenylethenyl-pyrimidines: the first example of the solvatochromic reversal of a hybrid organic/inorganic dye. Organic Chemistry Frontiers, 2019, 6, 3896-3901.	4.5	16
29	Solvatochromism of conjugated 4- <i>N</i> , <i>N</i> -dimethylaminophenyl-pyridinium donor–acceptor pairs. New Journal of Chemistry, 2018, 42, 4223-4231.	2.8	15
30	On the solvatochromic reversal of merocyanine dyes. Part 2.1 An experimental and semi-empirical study of the solvatochromism of $\hat{1}_{\pm}$ - and $\hat{1}^3$ -vinylogous pyridones. Journal of the Chemical Society Perkin Transactions II, 1997, , 1055-1058.	0.9	14
31	Kinetics and Mechanism of the Reaction of a Nitroxide Radical (Tempol) With a Phenolic Antioxidant. Free Radical Research, 2003, 37, 225-230.	3.3	14
32	A new dual probe for hydrogen abstraction. Tetrahedron, 2009, 65, 6025-6028.	1.9	14
33	A comparison of multiparametric methods for the interpretation of solvent-dependent chemical processes. Journal of Molecular Liquids, 2020, 312, 113362.	4.9	14
34	A simple method for the determination of the partitioning of nitroxide probes in microheterogeneous media. Magnetic Resonance in Chemistry, 2012, 50, 779-783.	1.9	13
35	Influence of the lanthanide(iii) ion in $\{[Cu3Ln2(oda)6(H2O)6]\hat{A}\cdot nH2O\}n\ (LnIII: La, Gd, Yb)\ catalysts on the heterogeneous oxidation of olefins. Catalysis Science and Technology, 2017, 7, 231-242.$	4.1	13
36	Magnetic and catalytic properties of the 2D copper(II) functionalized VPO hybrid system [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O. Polyhedron, 2010, 29, 2426-2434.	2.2	12

#	Article	IF	Citations
37	Ferromagnetic resonance investigation in permalloy magnetic antidot arrays on alumina nanoporous membranes. Journal of Magnetism and Magnetic Materials, 2014, 350, 88-93.	2.3	11
38	TEMPO-Attached Pre-fluorescent Probes Based on Pyridinium Fluorophores. Journal of Fluorescence, 2015, 25, 979-983.	2.5	11
39	The thermochromism of the ET(30) betaine in a micro-heterogeneous medium: A spectral and dynamics simulation study. Journal of Colloid and Interface Science, 2010, 349, 565-570.	9.4	10
40	Angular dependence of hysteresis shift in oblique deposited ferromagnetic/antiferromagnetic coupled bilayers. Journal of Applied Physics, 2014, 116, 033910.	2.5	9
41	"Cut-off―effect of antioxidants and/or probes of variable lipophilicity in microheterogeneous media. Food Chemistry, 2016, 206, 119-123.	8.2	9
42	The location of amphiphobic antioxidants in micellar systems: The diving-swan analogy. Food Chemistry, 2019, 279, 288-293.	8.2	9
43	A single theoretical descriptor for the bond-dissociation energy of substituted phenols. Journal of Molecular Modeling, 2015, 21, 12.	1.8	7
44	Sensing different micellar microenvironments with solvatochromic dyes of variable lipophilicity. Dyes and Pigments, 2011, 90, 219-224.	3.7	6
45	Cut-off effect of radical TEMPO derivatives in olive oil-in-water emulsions. Food Chemistry, 2017, 224, 342-346.	8.2	6
46	Solvatofluorochromism of conjugated 4-methoxyphenyl-Pyridinium electron donor-acceptor pairs. Dyes and Pigments, 2019, 166, 395-402.	3.7	6
47	Generation, Spectroscopic Characterization by EPR, and Decay of a Pyranineâ€Derived Radical. Helvetica Chimica Acta, 2007, 90, 2009-2016.	1.6	5
48	Change of mechanism with a change of substituents for a Zincke reaction. Tetrahedron Letters, 2014, 55, 3097-3099.	1.4	5
49	RAMAN AND SURFACE ENHANCED RAMAN SIGNALS OF THE SENSOR 1-(4-MERCAPTOPHENYL)-2,4,6-TRIPHENYLPYRIDINIUM PERCHLORATE. Journal of the Chilean Chemical Society, 2015, 60, 2944-2948.	1.2	5
50	On the interactions of TEMPO radicals with gold nanostructures. New Journal of Chemistry, 2018, 42, 9764-9770.	2.8	5
51	Antioxidant-spotting in micelles and emulsions. Food Chemistry, 2018, 245, 240-245.	8.2	5
52	Visualization of Phase-Transfer Catalysis through Charge-Transfer Complexes. Journal of Chemical Education, 2018, 95, 1631-1635.	2.3	5
53	Distribution and reactivity of gallates toward galvinoxyl radicals in SDS micellar solutions—ÂEffect of the alkyl chain length. Canadian Journal of Chemistry, 2011, 89, 181-185.	1.1	4
54	The effect of micellization on the EPR spectra and reactivity of 2,2,4,4-tetramethylpiperidinoxyl (TEMPO) radicals. Magnetic Resonance in Chemistry, 2016, 54, 870-873.	1.9	4

#	Article	IF	CITATIONS
55	Interaction of Nitroxide Radicals with an Au ₈ Nanostructure: Theoretical and Calorimetric Studies. Journal of Physical Chemistry C, 2019, 123, 21713-21720.	3.1	4
56	EPR spectrum of a radical from a nontypical antioxidant. Magnetic Resonance in Chemistry, 2014, 52, 409-411.	1.9	3
57	Symposium-in-Print in Honor of Eduardo A. Lissi Introduction. Photochemistry and Photobiology, 2007, 83, 471-474.	2.5	1
58	Special Issue Dedicated to the Memory of Elsa Beatriz Abuin Saccomano (1942–2012). Photochemistry and Photobiology, 2013, 89, 1270-1272.	2.5	1
59	Synthesis and evaluation of new heteroaryl nitrones with spin trap properties. RSC Advances, 2020, 10, 40127-40135.	3.6	1
60	Reactivity of 4â€pyrimidyl Sulfonic Esters in Suzukiâ€Miyaura Crossâ€Coupling Reactions in Water Under Microwave Irradiation. ChemistrySelect, 2021, 6, 12858-12861.	1.5	1
61	Generation and Reactivity Toward Oxygen of Carbon-Centered Radicals Containing Indane, Indene, and Fluorenyl Moieties ChemInform, 2003, 34, no.	0.0	0
62	Influence of the Nill/MnII ratio on the physical properties of heterometallic Ni2xMn(2â^2x)P2S6 phases and potassium intercalates K0.8Ni2xMn(1.6â^2x)P2S6·2H2O. New Journal of Chemistry, 2021, 45, 2175-2183.	2.8	0
63	A simple method to estimate the mean number of lipophilic molecules on nanoparticle surfaces by fluorescence measurements. Nanotechnology, 2021, 32, 315711.	2.6	0