Frieder Schock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3042157/publications.pdf Version: 2024-02-01

FRIEDER SCHOCK

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Epithelial Morphogenesis. Annual Review of Cell and Developmental Biology, 2002, 18, 463-493.	9.4	215
2	The initial steps of myofibril assembly: integrins pave the way. Nature Reviews Molecular Cell Biology, 2009, 10, 293-298.	37.0	153
3	Analysis of twenty-four Gal4 lines inDrosophila melanogaster. Genesis, 2002, 34, 51-57.	1.6	102
4	Integrin-Dependent Apposition of Drosophila Extraembryonic Membranes Promotes Morphogenesis and Prevents Anoikis. Current Biology, 2004, 14, 372-380.	3.9	100
5	Zasp is required for the assembly of functional integrin adhesion sites. Journal of Cell Biology, 2007, 179, 1583-1597.	5.2	100
6	Cellular Processes Associated with Germ Band Retraction in Drosophila. Developmental Biology, 2002, 248, 29-39.	2.0	82
7	The function of the M-line protein, obscurin, in controlling the symmetry of the sarcomere in Drosophila flight muscle. Journal of Cell Science, 2012, 125, 3367-79.	2.0	58
8	Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. Journal of Cell Biology, 2011, 194, 789-805.	5.2	57
9	mBtd is required to maintain signaling during murine limb development. Genes and Development, 2003, 17, 2630-2635.	5.9	53
10	Alp/Enigma Family Proteins Cooperate in Z-Disc Formation and Myofibril Assembly. PLoS Genetics, 2013, 9, e1003342.	3.5	48
11	Talin Autoinhibition Is Required for Morphogenesis. Current Biology, 2013, 23, 1825-1833.	3.9	43
12	The nebulin repeat protein Lasp regulates I-band architecture and filament spacing in myofibrils. Journal of Cell Biology, 2014, 206, 559-572.	5.2	43
13	Lasp anchors the Drosophila male stem cell niche and mediates spermatid individualization. Mechanisms of Development, 2008, 125, 768-776.	1.7	42
14	Pellino enhances innate immunity in Drosophila. Mechanisms of Development, 2010, 127, 301-307.	1.7	42
15	Expression of the tre operon of Bacillus subtilis 168 is regulated by the repressor TreR. Journal of Bacteriology, 1996, 178, 4576-4581.	2.2	41
16	Common and diverged functions of the Drosophila gene pair D-Sp1 and buttonhead. Mechanisms of Development, 1999, 89, 125-132.	1.7	40
17	Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion. PLoS Genetics, 2017, 13, e1006880.	3.5	40
18	Phenotypic suppression of empty spiracles is prevented by buttonhead. Nature, 2000, 405, 351-354.	27.8	32

FRIEDER SCHOCK

#	Article	IF	CITATIONS
19	Zasp52, a Core Z-disc Protein in Drosophila Indirect Flight Muscles, Interacts with α-Actinin via an Extended PDZ Domain. PLoS Genetics, 2016, 12, e1006400.	3.5	31
20	Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme II Tre and a potential regulator of the trehalose operon. Gene, 1996, 175, 59-63.	2.2	28
21	Myofibril diameter is set by a finely tuned mechanism of protein oligomerization in Drosophila. ELife, 2019, 8, .	6.0	27
22	A cascade of transcriptional control leading to axis determination inDrosophila. , 1997, 173, 162-167.		25
23	Molecular analysis of the interaction between the Bacillus subtilis trehalose repressor TreR and the tre operator. Molecular Genetics and Genomics, 1998, 260, 48-55.	2.4	22
24	Molecular mechanisms of mechanosensing in muscle development. Developmental Dynamics, 2009, 238, 1526-1534.	1.8	19
25	Muscle type-specific expression of Zasp52 isoforms in Drosophila. Gene Expression Patterns, 2011, 11, 484-490.	0.8	19
26	Zasp regulates integrin activation. Journal of Cell Science, 2012, 125, 5647-57.	2.0	17
27	Rapid IFM Dissection for Visualizing Fluorescently Tagged Sarcomeric Proteins. Bio-protocol, 2017, 7, .	0.4	16
28	Vectors using the phospho-α-(1,1)-glucosidase-encoding gene treA of Bacillus subtilis as a reporter. Gene, 1996, 170, 77-80.	2.2	14
29	Different Evolutionary Trajectories of Two Insect-Specific Paralogous Proteins Involved in Stabilizing Muscle Myofibrils. Genetics, 2019, 212, 743-755.	2.9	13
30	Drosophila head segmentation factor Buttonhead interacts with the same TATA box-binding protein-associated factors and in vivo DNA targets as human Sp1 but executes a different biological program. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5061-5065.	7.1	11
31	Slik phosphorylation of talin T152 is crucial for proper talin recruitment and maintenance of muscle attachment in <i>Drosophila</i> . Development (Cambridge), 2019, 146, .	2.5	8
32	Characterizing the actin-binding ability of Zasp52 and its contribution to myofibril assembly. PLoS ONE, 2020, 15, e0232137.	2.5	8
33	Commentary: Nanoscopy reveals the layered organization of the sarcomeric H-zone and I-band complexes. Frontiers in Cell and Developmental Biology, 2020, 8, 74.	3.7	3
34	Bimolecular Fluorescence Complementation (BiFC) for Studying Sarcomeric Protein Interactions in Drosophila. Bio-protocol, 2020, 10, e3569.	0.4	3
35	Characterizing the actin-binding ability of Zasp52 and its contribution to myofibril assembly. , 2020, 15, e0232137.		0
36	Characterizing the actin-binding ability of Zasp52 and its contribution to myofibril assembly. , 2020, 15, e0232137.		0

#	Article	IF	CITATIONS
37	Characterizing the actin-binding ability of Zasp52 and its contribution to myofibril assembly. , 2020, 15, e0232137.		Ο
38	Characterizing the actin-binding ability of Zasp52 and its contribution to myofibril assembly. , 2020, 15, e0232137.		0