Meena Bisht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3042076/publications.pdf

Version: 2024-02-01

471061 552369 29 697 17 26 h-index citations g-index papers 29 29 29 521 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications. International Journal of Biological Macromolecules, 2017, 96, 611-651.	3.6	83
2	Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chemistry, 2017, 19, 4900-4911.	4.6	83
3	Influence of cholinium-based ionic liquids on the structural stability and activity of α-chymotrypsin. New Journal of Chemistry, 2017, 41, 13902-13911.	1.4	55
4	Expanding the Potential Role of Deep Eutectic Solvents toward Facilitating the Structural and Thermal Stability of α-Chymotrypsin. ACS Sustainable Chemistry and Engineering, 2020, 8, 10151-10160.	3.2	40
5	Comprehensive Evaluation of Biomolecular Interactions between Protein and Amino Acid Basedâ€lonic Liquids: A Comparable Study between [Bmim][Br] and [Bmim][Gly] Ionic Liquids. ChemistrySelect, 2016, 1, 3510-3519.	0.7	32
6	Analysis of the driving force that rule the stability of lysozyme in alkylammonium-based ionic liquids. International Journal of Biological Macromolecules, 2015, 81, 1074-1081.	3.6	30
7	Exploring the Effect of Choline-Based Ionic Liquids on the Stability and Activity of Stem Bromelain. Journal of Physical Chemistry B, 2018, 122, 10435-10444.	1.2	28
8	Unveiling the potential of water as a co-solvent in microwave-assisted delignification of sugarcane bagasse using ternary deep eutectic solvents. Bioresource Technology, 2022, 351, 127005.	4.8	28
9	Refolding effects of partially immiscible ammonium-based ionic liquids on the urea-induced unfolded lysozyme structure. Physical Chemistry Chemical Physics, 2016, 18, 12419-12422.	1.3	27
10	Does choline-based amino acid ionic liquid behave as a biocompatible solvent for stem bromelain structure?. Process Biochemistry, 2018, 74, 77-85.	1.8	25
11	Enhanced Dissolution of Chitin Using Acidic Deep Eutectic Solvents: A Sustainable and Simple Approach to Extract Chitin from Crayfish shell Wastes as Alternative Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16073-16081.	3.2	23
12	Multifunctional solvothermal carbon derived from alginate using †water-in-deep eutectic solvents†for enhancing enzyme activity. Chemical Communications, 2020, 56, 9659-9662.	2.2	21
13	Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells. Scientific Reports, 2021, 11, 9099.	1.6	21
14	Uncovering the potential of aqueous solutions of deep eutectic solvents on the extraction and purification of collagen type I from Atlantic codfish (<i>Gadus morhua</i>). Green Chemistry, 2021, 23, 8940-8948.	4.6	20
15	Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?. Journal of Physical Chemistry B, 2016, 120, 5625-5633.	1.2	19
16	Direct conversion of lignocellulosic biomass to biomimetic tendril-like functional carbon helices: a protein friendly host for cytochrome C. Green Chemistry, 2018, 20, 3711-3716.	4.6	19
17	Effect of Imidazolium-Based Ionic Liquids on the Structure and Stability of Stem Bromelain: Concentration and Alkyl Chain Length Effect. Journal of Physical Chemistry B, 2018, 122, 7522-7529.	1.2	18
18	Designing biological fluid inspired molecularly crowded ionic liquid media as a sustainable packaging platform for cytochrome <i>c</i> . Chemical Communications, 2019, 55, 5747-5750.	2.2	18

#	Article	IF	CITATIONS
19	Engineering Quantum Dots with Ionic Liquid: A Multifunctional White Light Emitting Hydrogel for Enzyme Packaging. Advanced Optical Materials, 2020, 8, 1902022.	3.6	16
20	Enhanced solubility and improved stability of curcumin in novel water-in-deep eutectic solvent microemulsions. Journal of Molecular Liquids, 2021, 339, 117037.	2.3	15
21	Tweaking Behavior of Hydrogen Bond Donor in Choline Chloride-Based Deep Eutectic Solvents for Regulating the Phase Transition of Poly(<i>N</i> -vinylcaprolactam): A Sustainable Medium for an Early Hydrophobic Collapse. ACS Sustainable Chemistry and Engineering, 2021, 9, 14335-14344.	3.2	14
22	Exploring the structure and stability of amino acids and glycine peptides in biocompatible ionic liquids. RSC Advances, 2016, 6, 18763-18777.	1.7	13
23	Cholinium-Based Ionic Liquids as Efficient Media for Improving the Structural and Thermal Stability of Immunoglobulin G Antibodies. ACS Sustainable Chemistry and Engineering, 2022, 10, 5404-5420.	3.2	13
24	Engineering Cytochrome C with Quantum Dots and Ionic Liquids: A Win-Win Strategy for Protein Packaging against Multiple Stresses. ACS Sustainable Chemistry and Engineering, 2021, 9, 8327-8335.	3.2	11
25	Presenting B-DNA as macromolecular crowding agent to improve efficacy of cytochrome c under various stresses. International Journal of Biological Macromolecules, 2022, 215, 184-191.	3.6	8
26	Assessing the Compatibility of Mono-, Di-, and Tri-Cholinium Citrate Ionic Liquids for the Stability and Activity of α-Chymotrypsin. ACS Sustainable Chemistry and Engineering, 2021, 9, 4812-4822.	3.2	7
27	Exploring the Counteracting and Refolding Ability of Choline-Based Ionic Liquids toward Crowding Environment-Induced Changes in HSA Structure. ACS Sustainable Chemistry and Engineering, 2021, 9, 422-437.	3.2	7
28	Nanomaterials for Removal of Toxic Metals Ions from the Water. Advanced Structured Materials, 2019, , 159-174.	0.3	2
29	The Role of Ionic Liquids in Protein Folding/Unfolding Studies. , 2017, , .		1