Iva Hafner-Bratkoviĕ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/304203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NLRP3 is its own gatekeeper: a group hug of NLRP3 monomers controls inflammation. Trends in Biochemical Sciences, 2022, 47, 635-637.	7.5	1
2	The Role of Inflammasomes in Osteoarthritis and Secondary Joint Degeneration Diseases. Life, 2022, 12, 731.	2.4	13
3	The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity—In Vitro Correlation Analysis on THP-1 Macrophages. International Journal of Molecular Sciences, 2022, 23, 6197.	4.1	9
4	A Nanoscaffolded Spike-RBD Vaccine Provides Protection against SARS-CoV-2 with Minimal Anti-Scaffold Response. Vaccines, 2021, 9, 431.	4.4	18
5	Attachment of Cancer Urothelial Cells to the Bladder Epithelium Occurs on Uroplakin-Negative Cells and Is Mediated by Desmosomal and Not by Classical Cadherins. International Journal of Molecular Sciences, 2021, 22, 5565.	4.1	5
6	Disruption of disulfides within RBD of SARSâ€CoVâ€2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB Journal, 2021, 35, e21651.	0.5	44
7	Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell, 2021, 184, 4495-4511.e19.	28.9	201
8	Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation. Science Advances, 2021, 7, eabf4468.	10.3	65
9	Cleavage-Mediated Regulation of Myd88 Signaling by Inflammasome-Activated Caspase-1. Frontiers in Immunology, 2021, 12, 790258.	4.8	3
10	Differential Effect of Extracellular Acidic Environment on IL-1β Released from Human and Mouse Phagocytes. International Journal of Molecular Sciences, 2020, 21, 7229.	4.1	15
11	Selective inhibition of NLRP3 inflammasome by designed peptide originating from ASC. FASEB Journal, 2020, 34, 11068-11086.	0.5	13
12	Increased gene translation stringency in mammalian cells by nonsense suppression at multiple permissive sites with a single noncanonical amino acid. FEBS Letters, 2020, 594, 2452-2461.	2.8	2
13	Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro. International Journal of Molecular Sciences, 2020, 21, 7030.	4.1	2
14	lon homeostasis and ion channels in NLRP3 inflammasome activation and regulation. Current Opinion in Immunology, 2018, 52, 8-17.	5.5	64
15	NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nature Communications, 2018, 9, 5182.	12.8	102
16	Delivery of an Artificial Transcription Regulator dCas9-VPR by Extracellular Vesicles for Therapeutic Gene Activation. ACS Synthetic Biology, 2018, 7, 2715-2725.	3.8	43
17	The mechanism of NLRP3 inflammasome initiation: Trimerization but not dimerization of the NLRP3 pyrin domain induces robust activation of IL-1β. Biochemical and Biophysical Research Communications, 2017, 483, 823-828.	2.1	17
18	Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles. Toxicology Letters, 2017, 270, 108-118.	0.8	14

Iva Hafner-Bratkoviĕ

#	Article	IF	CITATIONS
19	Development of an Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of Inflammatory Bowel Disease. Journal of Medicinal Chemistry, 2017, 60, 3656-3671.	6.4	131
20	Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nature Biotechnology, 2017, 35, 1094-1101.	17.5	143
21	The NLRC4 inflammasome: The pieces of the puzzle are falling into place. Inflammasome, 2017, 3, .	0.6	3
22	Prions, prionoid complexes and amyloids: the bad, the good and something in between. Swiss Medical Weekly, 2017, 147, w14424.	1.6	12
23	Shikonin Suppresses NLRP3 and AIM2 Inflammasomes by Direct Inhibition of Caspase-1. PLoS ONE, 2016, 11, e0159826.	2.5	25
24	Anchorless forms of prion protein – Impact of truncation on structure destabilization and prion protein conversion. Biochemical and Biophysical Research Communications, 2016, 481, 1-6.	2.1	10
25	Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure. FASEB Journal, 2015, 29, 882-893.	0.5	18
26	Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Science Signaling, 2015, 8, ra60.	3.6	74
27	Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nature Chemical Biology, 2013, 9, 362-366.	8.0	272
28	NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1Î ² and neuronal toxicity. Cellular and Molecular Life Sciences, 2012, 69, 4215-4228.	5.4	83
29	Introduction of glutamines into the B2–H2 loop promotes prion protein conversion. Biochemical and Biophysical Research Communications, 2011, 413, 521-526.	2.1	11
30	Response to Apostol and Surewicz: Structural Underpinnings of Prion Protein Conversion. Journal of Biological Chemistry, 2011, 286, le8.	3.4	0
31	Globular Domain of the Prion Protein Needs to Be Unlocked by Domain Swapping to Support Prion Protein Conversion. Journal of Biological Chemistry, 2011, 286, 12149-12156.	3.4	89
32	Effect of Hydrophobic Mutations in the H2-H3 Subdomain of Prion Protein on Stability and Conversion In Vitro and In Vivo. PLoS ONE, 2011, 6, e24238.	2.5	7
33	Disulfide mapping reveals the domain swapping as the crucial process of the structural conversion of prion protein. Prion, 2011, 5, 56-59.	1.8	11
34	Tetracysteineâ€ŧagged prion protein allows discrimination between the native and converted forms. FEBS Journal, 2010, 277, 2038-2050.	4.7	21
35	Expression, purification and structural studies of a short antimicrobial peptide. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 314-323.	2.6	47
36	Curcumin binds to the αâ€helical intermediate and to the amyloid form of prion protein – a new mechanism for the inhibition of PrP ^{Sc} accumulation. Journal of Neurochemistry, 2008, 104, 1553-1564.	3.9	117

#	Article	IF	CITATIONS
37	The complete genome sequence of a Crimean-Congo Hemorrhagic Fever virus isolated from an endemic region in Kosovo. Virology Journal, 2008, 5, 7.	3.4	37
38	The POM Monoclonals: A Comprehensive Set of Antibodies to Non-Overlapping Prion Protein Epitopes. PLoS ONE, 2008, 3, e3872.	2.5	162
39	The NLRP3 inhibitor MCC950 inhibits IL-1β production in PBMC from 19 patients with Cryopyrin-Associated Periodic Syndrome and in 2 patients with Schnitzler's Syndrome. Wellcome Open Research, 0, 5, 247.	1.8	5