
Britta Sannel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3041984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Permafrost is warming at a global scale. Nature Communications, 2019, 10, 264.	5.8	1,039
2	Carbon release through abrupt permafrost thaw. Nature Geoscience, 2020, 13, 138-143.	5.4	434
3	A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene, 2014, 24, 1028-1042.	0.9	404
4	Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 2016, 7, 13043.	5.8	343
5	The thermal state of permafrost in the nordic area during the international polar year 2007–2009. Permafrost and Periglacial Processes, 2010, 21, 156-181.	1.5	257
6	Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 2013, 119, 359-374.	1.7	257
7	Permafrost collapse is accelerating carbon release. Nature, 2019, 569, 32-34.	13.7	237
8	Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 2018, 8, 907-913.	8.1	188
9	Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 2021, 11, 70-77.	8.1	167
10	Warming-induced destabilization of peat plateau/thermokarst lake complexes. Journal of Geophysical Research, 2011, 116, .	3.3	107
11	Effects of permafrost aggradation on peat properties as determined from a panâ€Arctic synthesis of plant macrofossils. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 78-94.	1.3	92
12	Permafrost Map for Norway, Sweden and Finland. Permafrost and Periglacial Processes, 2017, 28, 359-378.	1.5	92
13	Widespread global peatland establishment and persistence over the last 130,000 y. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4822-4827.	3.3	82
14	Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling. Water Resources Research, 2016, 52, 1591-1606.	1.7	79
15	Priorities and Interactions of Sustainable Development Goals (SDGs) with Focus on Wetlands. Water (Switzerland), 2019, 11, 619.	1.2	75
16	PeRL: aÂcircum-Arctic Permafrost Region Pond andÂLakeÂdatabase. Earth System Science Data, 2017, 9, 317-348.	3.7	62
17	Modelling past and future peatland carbon dynamics across the panâ€Arctic. Global Change Biology, 2020, 26, 4119-4133.	4.2	58
18	Holocene peat growth and decay dynamics in subâ€arctic peat plateaus, westâ€central Canada. Boreas, 2009, 38, 13-24.	1.2	51

BRITTA SANNEL

#	Article	IF	CITATIONS
19	Stable carbon and oxygen isotopes in Sphagnum fuscum peat from subarctic Canada: Implications for palaeoclimate studies. Chemical Geology, 2010, 270, 216-226.	1.4	46
20	Permafrost Warming in a Subarctic Peatland – Which Meteorological Controls are Most Important?. Permafrost and Periglacial Processes, 2016, 27, 177-188.	1.5	41
21	Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters, 2021, 16, 015001.	2.2	39
22	Long-term stability of permafrost in subarctic peat plateaus, west-central Canada. Holocene, 2008, 18, 589-601.	0.9	36
23	High-resolution remote sensing identification of thermokarst lake dynamics in a subarctic peat plateau complex. Canadian Journal of Remote Sensing, 2010, 36, S26-S40.	1.1	31
24	Long-term climate variability in continental subarctic Canada: A 6200-year record derived from stable isotopes in peat. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 298, 235-246.	1.0	20
25	Predicted Vulnerability of Carbon in Permafrost Peatlands With Future Climate Change and Permafrost Thaw in Western Canada. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005872.	1.3	20
26	Holocene development of subarctic permafrost peatlands in Finnmark, northern Norway. Holocene, 2018, 28, 1855-1869.	0.9	17
27	Overlooked organic vapor emissions from thawing Arctic permafrost. Environmental Research Letters, 2020, 15, 104097.	2.2	17
28	A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth, 2022, 5, 86-97.	3.6	14
29	Holocene development and permafrost history in subâ€arctic peatlands in Tavvavuoma, northern Sweden. Boreas, 2018, 47, 454-468.	1.2	12
30	Data for wetlandscapes and their changes around the world. Earth System Science Data, 2020, 12, 1083-1100.	3.7	12
31	Ground temperature and snow depth variability within a subarctic peat plateau landscape. Permafrost and Periglacial Processes, 2020, 31, 255-263.	1.5	11
32	Permafrost Thaw in Northern Peatlands: Rapid Changes in Ecosystem and Landscape Functions. Ecological Studies, 2021, , 27-67.	0.4	11
33	Permafrost Thaw Increases Methylmercury Formation in Subarctic Fennoscandia. Environmental Science & Technology, 2021, 55, 6710-6717.	4.6	10
34	Warming climate forcing impact from a sub-arctic peatland as a result of late Holocene permafrost aggradation and initiation of bare peat surfaces. Quaternary Science Reviews, 2021, 264, 107022.	1.4	3
35	Synchronous or Not? The Timing of the Younger Dryas and Greenland Stadial-1 Reviewed Using Tephrochronology. Quaternary, 2022, 5, 19.	1.0	3