Puay-Wah Phuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/304181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Affinity-matured â€~aquaporumab' anti-aquaporin-4 antibody for therapy of seropositive neuromyelitis optica spectrum disorders. Neuropharmacology, 2020, 162, 107827.	2.0	32
2	Synthesis and evaluation of tetrahydropyrazolopyridine inhibitors of anion exchange protein SLC26A4 (pendrin). Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2119-2123.	1.0	1
3	Nanomolar-potency â€~co-potentiator' therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants. Scientific Reports, 2019, 9, 17640.	1.6	46
4	ΔF508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter. SLAS Discovery, 2018, 23, 823-831.	1.4	5
5	Combination potentiator (â€~co-potentiator') therapy for CF caused by CFTR mutants, including N1303K, that are poorly responsive to single potentiators. Journal of Cystic Fibrosis, 2018, 17, 595-606.	0.3	48
6	Nanomolar-Potency Aminophenyl-1,3,5-triazine Activators of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Chloride Channel for Prosecretory Therapy of Dry Eye Diseases. Journal of Medicinal Chemistry, 2017, 60, 1210-1218.	2.9	16
7	High-Potency Phenylquinoxalinone Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activators. Journal of Medicinal Chemistry, 2017, 60, 2401-2410.	2.9	27
8	Correctors and Potentiators Rescue Function of the Truncated W1282X-Cystic Fibrosis Transmembrane Regulator (CFTR) Translation Product. Journal of Biological Chemistry, 2017, 292, 771-785.	1.6	73
9	The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opinion on Therapeutic Targets, 2017, 21, 1161-1170.	1.5	130
10	Experimental Evaluation of Proposed Small-Molecule Inhibitors of Water Channel Aquaporin-1. Molecular Pharmacology, 2016, 89, 686-693.	1.0	23
11	Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis. FASEB Journal, 2016, 30, 2187-2197.	0.2	47
12	Discovery, synthesis and structure–activity analysis of symmetrical 2,7-disubstituted fluorenones as urea transporter inhibitors. MedChemComm, 2015, 6, 1278-1284.	3.5	13
13	Structure-activity analysis of thiourea analogs as inhibitors of UT-A and UT-B urea transporters. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1075-1080.	1.4	14
14	Potentiators of Defective ΔF508–CFTR Gating that Do Not Interfere with Corrector Action. Molecular Pharmacology, 2015, 88, 791-799.	1.0	38
15	ΔF508-CFTR correctors: Synthesis and evaluation of thiazole-tethered imidazolones, oxazoles, oxadiazoles, and thiadiazoles. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5840-5844.	1.0	15
16	Diuresis and reduced urinary osmolality in rats produced by smallâ€molecule UTâ€Aâ€selective urea transport inhibitors. FASEB Journal, 2014, 28, 3878-3890.	0.2	18
17	Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Science Translational Medicine, 2014, 6, 246ra97.	5.8	264
18	Synergy-Based Small-Molecule Screen Using a Human Lung Epithelial Cell Line Yields ΔF508-CFTR Correctors That Augment VX-809 Maximal Efficacy. Molecular Pharmacology, 2014, 86, 42-51.	1.0	58

#	Article	IF	CITATIONS
19	C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica. Acta Neuropathologica, 2013, 125, 829-840.	3.9	57
20	Complement-dependent Cytotoxicity in Neuromyelitis Optica Requires Aquaporin-4 Protein Assembly in Orthogonal Arrays. Journal of Biological Chemistry, 2012, 287, 13829-13839.	1.6	124
21	A Small-molecule Screen Yields Idiotype-specific Blockers of Neuromyelitis Optica Immunoglobulin G Binding to Aquaporin-4. Journal of Biological Chemistry, 2012, 287, 36837-36844.	1.6	18
22	Cyanoquinolines with Independent Corrector and Potentiator Activities Restore ΔPhe508-Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Function in Cystic Fibrosis. Molecular Pharmacology, 2011, 80, 683-693.	1.0	61