Ayaz Najafov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3041773/publications.pdf Version: 2024-02-01

Δχαζ Ναιάξου

#	Article	IF	CITATIONS
1	RIPK1 Promotes Energy Sensing by the mTORC1 Pathway. Molecular Cell, 2021, 81, 370-385.e7.	9.7	25
2	ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nature Communications, 2021, 12, 2346.	12.8	52
3	Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein and Cell, 2021, 12, 769-787.	11.0	63
4	NEK1-mediated retromer trafficking promotes blood–brain barrier integrity by regulating glucose metabolism and RIPK1 activation. Nature Communications, 2021, 12, 4826.	12.8	20
5	Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer's disease mouse model. Nature Communications, 2020, 11, 5731.	12.8	94
6	Modulating TRADD to restore cellular homeostasis and inhibit apoptosis. Nature, 2020, 587, 133-138.	27.8	57
7	GECO: gene expression correlation analysis after genetic algorithm-driven deconvolution. Bioinformatics, 2019, 35, 156-159.	4.1	5
8	TAM Kinases Promote Necroptosis by Regulating Oligomerization of MLKL. Molecular Cell, 2019, 75, 457-468.e4.	9.7	87
9	Casein kinase-1γ1 and 3 stimulate tumor necrosis factor-induced necroptosis through RIPK3. Cell Death and Disease, 2019, 10, 923.	6.3	22
10	ABIN-1 heterozygosity sensitizes to innate immune response in both RIPK1-dependent and RIPK1-independent manner. Cell Death and Differentiation, 2019, 26, 1077-1088.	11.2	18
11	Synergistic effect of a novel autophagy inhibitor and Quizartinib enhances cancer cell death. Cell Death and Disease, 2018, 9, 138.	6.3	23
12	Necroptosis in development and diseases. Genes and Development, 2018, 32, 327-340.	5.9	270
13	ABIN-1 regulates RIPK1 activation by linking Met1 ubiquitylation with Lys63 deubiquitylation in TNF-RSC. Nature Cell Biology, 2018, 20, 58-68.	10.3	83
14	BRAF and AXL oncogenes drive RIPK3 expression loss in cancer. PLoS Biology, 2018, 16, e2005756.	5.6	56
15	Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFα-mediated apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5944-E5953.	7.1	110
16	Necroptosis and Cancer. Trends in Cancer, 2017, 3, 294-301.	7.4	153
17	Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nature Communications, 2017, 8, 359.	12.8	210
18	CrossCheck: an open-source web tool for high-throughput screen data analysis. Scientific Reports, 2017, 7, 5855.	3.3	4

Ayaz Najafov

#	Article	IF	CITATIONS
19	Roles of Caspases in Necrotic Cell Death. Cell, 2016, 167, 1693-1704.	28.9	234
20	RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science, 2016, 353, 603-608.	12.6	448
21	The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids. ELife, 2016, 5, .	6.0	22
22	Activation of Necroptosis in Multiple Sclerosis. Cell Reports, 2015, 10, 1836-1849.	6.4	413
23	Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. Journal of Cell Biology, 2015, 210, 705-716.	5.2	95
24	G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. ELife, 2015, 4, e06734.	6.0	80
25	Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. Journal of Experimental Medicine, 2015, 212, 212100IA79.	8.5	0
26	PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development. EMBO Journal, 2013, 32, 1008-1022.	7.8	32
27	Akt is efficiently activated by PIF-pocket- and PtdIns(3,4,5) <i>P</i> 3-dependent mechanisms leading to resistance to PDK1 inhibitors. Biochemical Journal, 2012, 448, 285-295.	3.7	61
28	MENA Is a Transcriptional Target of the Wnt/Beta-Catenin Pathway. PLoS ONE, 2012, 7, e37013.	2.5	16
29	ZNRF2 is released from membranes by growth factors and, together with ZNRF1, regulates the Na+/K+ATPase. Journal of Cell Science, 2012, 125, 4662-4675.	2.0	27
30	Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Biochemical Journal, 2011, 433, 357-369.	3.7	128
31	Analysis of the Wnt/B-catenin/TCF4 pathway using SAGE, genome-wide microarray and promoter analysis: Identification of BRI3 and HSF2 as novel targets. Cellular Signalling, 2010, 22, 1523-1535.	3.6	17
32	Uncoupling the Warburg effect from cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19135-19136.	7.1	34
33	The UNC-45 chaperone mediates sarcomere assembly through myosin degradation in Caenorhabditis elegans. Journal of Cell Biology, 2007, 177, 205-210.	5.2	82
34	Clinicopathological and genetic study of early-onset demyelinating neuropathy. Brain, 2004, 127, 2540-2550.	7.6	76