Marcos V Lorevice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/304167/publications.pdf

Version: 2024-02-01

840585 940416 1,130 15 11 16 citations h-index g-index papers 16 16 16 1425 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comprehensive study of cellulose nanocrystals acetylation effects on poly (butylene) Tj ETQq1 1 0.784314 rgBT Industrial Crops and Products, 2022, 177, 114459.	Overlock 2.5	10 Tf 50 747 7
2	Effect of green tea extract on gelatin-based films incorporated with lemon essential oil. Journal of Food Science and Technology, 2021, 58, 1-8.	1.4	28
3	Porous Cellulose Nanofibril–Natural Rubber Latex Composite Foams for Oil and Organic Solvent Absorption. ACS Applied Nano Materials, 2020, 3, 10954-10965.	2.4	24
4	Escalating the technical bounds for the production of cellulose-aided peach leathers: From the benchtop to the pilot plant. Carbohydrate Polymers, 2020, 245, 116437.	5.1	5
5	Antibacterial Properties of Oregano Essential Oil Encapsulated in Poly(ε-Caprolactone) Nanoparticles. Advanced Science, Engineering and Medicine, 2020, 12, 864-869.	0.3	2
6	On the effects of hydroxyl substitution degree and molecular weight on mechanical and water barrier properties of hydroxypropyl methylcellulose films. Carbohydrate Polymers, 2018, 185, 105-111.	5.1	31
7	Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Industrial Crops and Products, 2018, 121, 66-72.	2.5	54
8	High-Pressure Microfluidization as a Green Tool for Optimizing the Mechanical Performance of All-Cellulose Composites. ACS Sustainable Chemistry and Engineering, 2018, 6, 12727-12735.	3.2	15
9	Hydrophobic edible films made up of tomato cutin and pectin. Carbohydrate Polymers, 2017, 164, 83-91.	5.1	92
10	Recent Advances on Edible Films Based on Fruits and Vegetablesâ€"A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1151-1169.	5.9	359
11	Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of highand low-methyl pectin films. Food Hydrocolloids, 2016, 52, 732-740.	5.6	126
12	NANOCOMPOSITE OF PAPAYA PUREE AND CHITOSAN NANOPARTICLES FOR APPLICATION IN PACKAGING. Quimica Nova, 2014, , .	0.3	2
13	Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids, 2014, 41, 188-194.	5.6	279
14	Development of Novel Guava Puree Films Containing Chitosan Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 2711-2717.	0.9	38
15	Highly Stable, Edible Cellulose Films Incorporating Chitosan Nanoparticles. Journal of Food Science, 2011, 76, N25-9.	1.5	66