List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3041649/publications.pdf Version: 2024-02-01

4.0

12

#	Article	IF	CITATIONS
1	Thermal properties of (Gd0.6Sr0.4)0.99Fe1-xCoxO3-δ cathodes for intermediate temperature solid oxide fuel cells. Ceramics International, 2021, 47, 5407-5414.	4.8	1
2	Evaluation of LSF based SOFC cathodes using cone-shaped electrodes and EIS. Solid State Ionics, 2020, 344, 115096.	2.7	28
3	EIS measurements on porous cell stacks with an La0.85Sr0.15CoxMn1-xO3 (x=0, 0.01, 0.03 and 0.05) - Ce0.9Gd0.1O1.95 backbone in an atmosphere containing NOx. International Journal of Electrochemical Science, 2020, , 3578-3592.	1.3	1
4	Ce1-xPrxO2-d (x = 0.1, 0.2, 0.3 and 0.4) as Suspended Catalysts in a Hybrid Direct Carbon Fuel Cell. International Journal of Electrochemical Science, 2020, , 9294-9299.	1.3	0
5	Cathode Supported Hybrid Direct Carbon Fuel Cells with Different Anodes. International Journal of Electrochemical Science, 2020, , 6035-6040.	1.3	0
6	Electrochemical Reduction of Oxygen and Nitric Oxide on Mn-Based Perovskites with Different A-Site Cations. International Journal of Electrochemistry, 2020, 2020, 1-6.	2.4	2
7	Facilitating oxygen reduction by silver nanoparticles on lanthanum strontium ferrite cathode. Journal of Solid State Electrochemistry, 2020, 24, 609-621.	2.5	8
8	Activation/Deactivation Phenomena's in the Electrochemical Reduction of O ₂ and NO on La _{1â^²} <i>_x</i> Sr <i>_xElectrochemistry, 2020, 88, 146-150.</i>	kgt;FeO<	;sub>3â~1
9	A study of La1-xSrxCoO3-δSOFC Cathodes using Cone-shaped Electrodes and EIS. International Journal of Electrochemical Science, 2020, 15, 12030-12040.	1.3	1
10	Silver Modified Cathodes for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F79-F88.	2.9	16
11	Highly porous Ce–W–TiO ₂ free-standing electrospun catalytic membranes for efficient de-NO _x <i>via</i> ammonia selective catalytic reduction. Environmental Science: Nano, 2019, 6, 94-104.	4.3	10
12	Corrosion Study of Cr-Oxide Ceramics Using Rotating Ring Disk Electrode. Journal of the Electrochemical Society, 2019, 166, C3159-C3169.	2.9	0
13	Effect of cobalt on the activity of dual phase "(Gd0.6Sr0.4)0.99Fe1-xCoxO3-Î′―SOFC cathodes. Journal of Solid State Electrochemistry, 2019, 23, 965-970.	2.5	3
14	NOx conversion in La0.85Sr0.15Co0.03Mn0.97O3+d-Ce0.9Gd0.1O1.95 porous cell stacks infiltrated with Pt. Journal of Electroceramics, 2019, 42, 1-8.	2.0	1
15	Silver Exsolution-Enhanced Electrical Properties of Lanthanum-Based Perovskites. Journal of Materials Science and Engineering A, 2019, 9, .	0.1	1
16	Studies of Aâ€site Deficient (Gd _{0.6} Sr _{0.4}) _{1–s} Fe _{0.8} Co _{0.2} O _{3–Cathodes in SOFCs. Fuel Cells, 2018, 18, 96-100.}	ub 2. 4i> <su< td=""><td>bxâ´<!--</td--></td></su<>	bxâ´ </td
17	Amorphous saturated cerium–tungsten–titanium oxide nanofiber catalysts for NO _x selective catalytic reaction. New Journal of Chemistry, 2018, 42, 9501-9509.	2.8	10

¹⁸ Effect of the sol-gel conditions on the morphology and SCR performance of electrospun V-W-TiO 2 catalysts. Journal of Physics and Chemistry of Solids, 2018, 118, 255-261.

#	Article	IF	CITATIONS
19	Activation/Deactivation Phenomena in the Electrochemical Reduction of Nitric oxide and Oxygen on LSM perovskites. International Journal of Electrochemical Science, 2018, 13, 4782-4791.	1.3	4
20	Cr- and Ti-Based Spinels as Materials for Anodic Catalyst Support in PEM Electrolysis Cells: Assessing Corrosion Stability and Support Role in Catalyst Activity of Corrosion Stable Ceramics. ECS Transactions, 2018, 85, 65-77.	0.5	2
21	Communication—Perovskite Electrochemical System for Highly Selective NOxReduction of Diesel Engine Exhaust. Journal of the Electrochemical Society, 2018, 165, H591-H593.	2.9	8
22	Cathode-supported hybrid direct carbon fuel cells. International Journal of Hydrogen Energy, 2017, 42, 4311-4319.	7.1	13
23	Direct Coal Oxidation in Modified Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F333-F337.	2.9	5
24	Determination of the Resistance of Cone-Shaped Solid Electrodes. Journal of the Electrochemical Society, 2017, 164, E3035-E3039.	2.9	1
25	Effect of CeO2Addition on Hybrid Direct Carbon Fuel Cell Performance. Journal of the Electrochemical Society, 2017, 164, F328-F332.	2.9	10
26	NOx selective catalytic reduction (SCR) on self-supported V–W-doped TiO ₂ nanofibers. New Journal of Chemistry, 2017, 41, 3466-3472.	2.8	24
27	Permeability, strength and electrochemical studies on ceramic multilayers for solid-state electrochemical cells. Heliyon, 2017, 3, e00371.	3.2	2
28	NOx and propene conversion on La0.85Sr0.15MnO3+d/Ce0.9Gd0.1O1.95 symmetrical cells. Journal of Electrochemical Science and Engineering, 2017, , .	3.5	0
29	Cone-Shaped Gd1-xSrxFe0.8Co0.2O3-δElectrodes for SOFC Cathodes. International Journal of Electrochemical Science, 2017, 12, 11540-11545.	1.3	4
30	Highly selective NO x reduction for diesel engine exhaust via an electrochemical system. Electrochemistry Communications, 2016, 72, 36-40.	4.7	9
31	New Hypothesis for SOFC Ceramic Oxygen Electrode Mechanisms. ECS Transactions, 2016, 72, 93-103.	0.5	4
32	Influence of pore former on porosity and mechanical properties of Ce0.9Gd0.1O1.95 electrolytes for flue gas purification. Ceramics International, 2016, 42, 4546-4555.	4.8	4
33	Effect of pore formers on properties of tape cast porous sheets for electrochemical flue gas purification. Journal of the European Ceramic Society, 2016, 36, 645-653.	5.7	15
34	Hybrid Direct Carbon Fuel Cell Performance With Anode Current Collector Material. Journal of Fuel Cell Science and Technology, 2015, 12, .	0.8	2
35	In Situ Studies of Fe ⁴⁺ Stability in <i>β</i> -Li ₃ Fe ₂ (PO ₄) ₃ Cathodes for Li Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A531-A537.	2.9	13
36	Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup. International Journal of Hydrogen Energy, 2015, 40, 1945-1958.	7.1	15

#	Article	IF	CITATIONS
37	Effect of Co3O4 and Co3O4/CeO2 Infiltration on the Catalytic and Electro-catalytic Activity of LSM15/CGO10 Porous Cells Stacks for Oxidation of Propene. Electrochimica Acta, 2015, 159, 23-28.	5.2	2
38	Electrochemical reduction of NO with propene in the presence of oxygen on LSCoM/CGO porous cell stacks impregnated with BaO. Journal of Solid State Electrochemistry, 2015, 19, 1611-1620.	2.5	6
39	Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells. Journal of the Electrochemical Society, 2015, 162, F327-F339.	2.9	21
40	Direct Coal Oxidation in Modified Solid Oxide Fuel Cells. ECS Transactions, 2015, 68, 2685-2694.	0.5	5
41	Enhancing Hybrid Direct Carbon Fuel Cell anode performance using Ag2O. Electrochimica Acta, 2015, 152, 222-239.	5.2	31
42	Effect of Supplied CO-CO2 in the Presence of Carbon. Journal of Electrochemical Science and Engineering, 2015, 5, .	3.5	1
43	NOx Conversion of Porous LSF15-CGO10 Cell Stacks. Journal of New Materials for Electrochemical Systems, 2015, 18, 111-120.	0.6	1
44	Effect of CeO ₂ Infiltration on the Hybrid Direct Carbon Fuel Cell Performance. ECS Transactions, 2014, 61, 255-267.	0.5	4
45	HDCFC Performance as a Function of Anode Atmosphere (N ₂ -CO ₂). Journal of the Electrochemical Society, 2014, 161, F33-F46.	2.9	21
46	Electrochemical Oxidation of Propene with a LSF ₁₅ /CGO ₁₀ Electrochemical Reactor. Journal of the Electrochemical Society, 2014, 161, F323-F331.	2.9	0
47	Removal of NOx with Porous Cell Stacks with La _{0.85} Sr _{0.15} Co _x Mn _{1-x} O _{3+δ} -Ce _{0.9Infiltrated with BaO. Journal of the Electrochemical Society, 2014, 161, H663-H669.}	b>@dxsut)>0710
48	Hybrid direct carbon fuel cells and their reaction mechanisms—a review. Journal of Solid State Electrochemistry, 2014, 18, 861-882.	2.5	59
49	Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs. ECS Transactions, 2014, 61, 225-234.	0.5	5
50	High Performance Infiltrated Backbones for Cathode-Supported SOFC's. ECS Transactions, 2014, 64, 41-51.	0.5	8
51	Impedance Spectroscopy and Catalytic Activity Characterization of a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 Electrochemical Reactor for the Oxidation of Propene. Electrocatalysis, 2014, 5, 419-425.	3.0	Ο
52	Electrochemical Reduction of Oxygen and Nitric Oxide at Low Temperature on La1â^'x Sr x FeO3â^'δ Cathodes. Electrocatalysis, 2014, 5, 256-261.	3.0	9
53	Fabrication of highly porous LSM/CGO cell stacks for electrochemical flue gas purification. Ceramics International, 2013, 39, 2159-2163.	4.8	9
54	Electrochemical reduction of oxygen and nitric oxide at low temperature on Ce1â^'xPrxO2⠴δ cathodes. Electrochimica Acta, 2013, 114, 474-477.	5.2	12

#	Article	IF	CITATIONS
55	Effect of infiltration material on a LSM15/CGO10 electrochemical reactor in the electrochemical oxidation of propene. Journal of Solid State Electrochemistry, 2013, 17, 895-908.	2.5	5
56	Electrochemical reduction of oxygen and nitric oxide at low temperature on La1â ^{~2} xSrxMnO3+Î [′] cathodes. Materials Research Bulletin, 2013, 48, 3274-3277.	5.2	12
57	Production of a half cell with a LSM/CGO support for electrochemical flue gas purification. Ceramics International, 2013, 39, 8649-8655.	4.8	2
58	Enhancement of NO removal performance for (La0.85Sr0.15)0.99MnO3/Ce0.9Gd0.1O1.95 electrochemical cells by NO storage/reduction adsorption layers. Electrochimica Acta, 2013, 90, 482-491.	5.2	32
59	A combined SEM, CV and EIS study of multi-layered porous ceramic reactors for flue gas purification. Ceramics International, 2013, 39, 847-851.	4.8	7
60	Electrochemical NOx reduction on an LSM/CGO symmetric cell modified by NOx adsorbents. Journal of Materials Chemistry A, 2013, 1, 7137.	10.3	13
61	Fabrication and Characterization of Multi-Layer Ceramics for Electrochemical Flue Gas Purification. Journal of the Electrochemical Society, 2013, 160, E113-E119.	2.9	5
62	NOxReduction on Ag Electrochemical Cells with a K-Pt-Al2O3Adsorption Layer. Journal of the Electrochemical Society, 2013, 160, H294-H301.	2.9	5
63	Characterization of LSM/CGO Symmetric Cells Modified by NO _x Adsorbents for Electrochemical NO _x Removal with Impedance Spectroscopy. Journal of the Electrochemical Society, 2013, 160, H494-H501.	2.9	6
64	Electrochemical Reduction of Oxygen and Nitric oxide at low Temperature on La _{1-x} Sr _x Cr _{0.97} V _{0.03} O _{3-δ} Cathodes. Journal of the Electrochemical Society, 2013, 160, F1254-F1257.	2.9	4
65	Electrochemical Oxidation of Propene by Use of LSM ₁₅ /CGO ₁₀ Electrochemical Reactor. Journal of the Electrochemical Society, 2012, 159, P57-P64.	2.9	5
66	A combined SEM and CV study of solid oxide fuel cell interconnect steels. Journal of Solid State Electrochemistry, 2012, 16, 1399-1404.	2.5	2
67	Optimization of an electrochemical cell with an adsorption layer for NOx removal. Journal of Solid State Electrochemistry, 2012, 16, 3331-3340.	2.5	6
68	NOx conversion on LSM15-CGO10 cell stacks with BaO impregnation. Journal of Materials Chemistry, 2012, 22, 11792.	6.7	26
69	Diffuse Reflectance Infrared Fourier Transform Study of NO _{<i>x</i>} Adsorption on CGO10 Impregnated with K ₂ O or BaO. Journal of Physical Chemistry A, 2012, 116, 2497-2505.	2.5	10
70	NO x conversion on porous LSF15–CGO10 cell stacks with KNO3 or K2O impregnation. Journal of Solid State Electrochemistry, 2012, 16, 2651-2660.	2.5	8
71	Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification. Ceramics International, 2012, 38, 1751-1754.	4.8	9
72	Electrochemical testing of composite electrodes of (La1â^'x Sr x) s MnO3 and doped ceria in NO-containing atmosphere. Journal of Solid State Electrochemistry, 2012, 16, 703-714.	2.5	9

#	Article	IF	CITATIONS
73	Low temperature reduction of NO and O2 on A-site deficient (Pr0.6Sr0.4)1â^'s Fe0.8Co0.2O3â^'δ perovskites. Journal of Materials Science, 2011, 46, 6457-6460.	3.7	3
74	Optimizing the performance of porous electrochemical cells for flue gas purification using the DOE method. Ceramics International, 2011, 37, 903-911.	4.8	9
75	Improvement of LSM15-CGO10 Electrodes for Electrochemical Removal of NOx by KNO3 and MnOx Impregnation. Journal of the Electrochemical Society, 2011, 158, P147.	2.9	7
76	Effect of impregnation of La0.85Sr0.15MnO3/yttria stabilized zirconia solid oxide fuel cell cathodes with La0.85Sr0.15MnO3 or Al2O3 nano-particles. Electrochimica Acta, 2010, 55, 4606-4609.	5.2	24
77	NiCr x Fe2-x O4 as cathode materials for electrochemical reduction of NO x. Journal of Solid State Electrochemistry, 2010, 14, 157-166.	2.5	13
78	High-performance Fe–Co-based SOFC cathodes. Journal of Solid State Electrochemistry, 2010, 14, 2107-2112.	2.5	10
79	The effect of A-site deficiency on the performance of La1â^'sFe0.4Ni0.6O3â^'δ cathodes. Materials Research Bulletin, 2010, 45, 197-199.	5.2	7
80	Electrochemical reduction of nitrous oxide on La1â^'xSrxFeO3 perovskites. Materials Research Bulletin, 2010, 45, 1334-1337.	5.2	8
81	Electrochemical removal of NOx with porous cell stacks. Materials Research Bulletin, 2010, 45, 1554-1561.	5.2	32
82	Sintering Effect on Material Properties of Electrochemical Reactors Used for Removal of Nitrogen Oxides and Soot Particles Emitted from Diesel Engines. Fuel Cells, 2010, 10, 636-642.	2.4	2
83	Solid state electrochemical DeNOx—An overview. Applied Catalysis B: Environmental, 2010, 100, 427-432.	20.2	38
84	EIS Measurements on La[sub 1â^'x]Sr[sub x]Co[sub 1â^'y]Fe[sub y]O[sub 3â^'Î] Based Composite Electrodes in NO[sub x] Containing Atmosphere. Journal of the Electrochemical Society, 2010, 157, P107.	2.9	12
85	The Effect of a CGO Barrier Layer on the Performance of LSM/YSZ SOFC Cathodes. Journal of the Electrochemical Society, 2010, 157, B309.	2.9	26
86	Electrochemical Removal of NOx-Gasses by Use of LSM-Cathodes Impregnated with a NOx Storage Compound. ECS Transactions, 2010, 28, 193-203.	0.5	0
87	Electrochemical Reduction of Oxygen and Nitric Oxide at Low Temperature on La[sub 1â^x]Sr[sub x]CoO[sub 3â^îl] Cathodes. Journal of the Electrochemical Society, 2010, 157, P79.	2.9	12
88	Characterization of (La[sub 1â^'x]Sr[sub x])[sub s]MnO[sub 3] and Doped Ceria Composite Electrodes in NO[sub x]-Containing Atmosphere with Impedance Spectroscopy. Journal of the Electrochemical Society, 2010, 157, P35.	2.9	28
89	A-Site Deficient (Pr[sub 0.6]Sr[sub 0.4])[sub 1â^'s]Fe[sub 0.8]Co[sub 0.2]O[sub 3â^'î] Perovskites as Solid Oxide Fuel Cell Cathodes. Journal of the Electrochemical Society, 2009, 156, B1257.	2.9	25
90	The NiFe2O4 - MgFe2O4 series as electrode materials for electrochemical reduction of NO x. Journal of Solid State Electrochemistry, 2009, 13, 1241-1250.	2.5	11

#	Article	IF	CITATIONS
91	Electrochemical reduction of NO on La2-x Sr x NiO4 based electrodes. Journal of Solid State Electrochemistry, 2009, 13, 1529-1534.	2.5	8
92	Characterization of MgMn x Fe2â°'x O4 as a possible cathode material for electrochemical reduction of NO x. Journal of Applied Electrochemistry, 2009, 39, 2369-2374.	2.9	9
93	Processing and characterization of porous electrochemical cells for flue gas purification. Ionics, 2009, 15, 427-431.	2.4	17
94	An EIS study of La2 â^' x Sr x NiO4 +  δ SOFC cathodes. Ionics, 2009, 15, 325-328.	2.4	21
95	Electrochemical characterization and redox behavior of Nb-doped SrTiO3. Solid State Ionics, 2009, 180, 63-70.	2.7	81
96	Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ionics, 2008, 179, 2047-2058.	2.7	153
97	Electrochemical reduction of O2 and NO on Ni, Pt and Au. Journal of Applied Electrochemistry, 2008, 38, 591-595.	2.9	14
98	Electrochemical reduction of NO and O2 on La2â^'x Sr x CuO4-based electrodes. Journal of Solid State Electrochemistry, 2008, 12, 1573-1577.	2.5	9
99	Temperature dependence of the cation distribution in measured with high temperature neutron diffraction. Journal of Solid State Chemistry, 2008, 181, 2364-2369.	2.9	29
100	Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cells. ECS Transactions, 2008, 13, 181-194.	0.5	26
101	Evaluation of LSF based SOFC Cathodes using Cone-shaped Electrodes. ECS Transactions, 2008, 13, 153-160.	0.5	7
102	Conductivity and electrochemical characterization of PrFe1â^'xNixO3â^'δ at high temperature. Journal of Alloys and Compounds, 2007, 428, 256-261.	5.5	19
103	Gd[sub 0.6]Sr[sub 0.4]Fe[sub 0.8]Co[sub 0.2]O[sub 3â^'Î]: A Novel Type of SOFC Cathode. Electrochemical and Solid-State Letters, 2007, 10, B119.	2.2	13
104	A-site deficient (La0.6Sr0.4)1â^'sFe0.8Co0.2O3â^'δ perovskites as SOFC cathodes. Solid State Ionics, 2007, 178, 1379-1384.	2.7	96
105	Electrochemical reduction of NO2 studied by the use of cone-shaped electrodes. Electrochemistry Communications, 2007, 9, 2721-2724.	4.7	8
106	Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate process. Journal of the European Ceramic Society, 2007, 27, 3609-3612.	5.7	33
107	Influence of BaO in perovskite electrodes for the electrochemical reduction of NO x. Topics in Catalysis, 2007, 45, 131-135.	2.8	10
108	Spinels as cathodes for the electrochemical reduction of O2 and NO. Topics in Catalysis, 2007, 45, 143-148.	2.8	21

#	Article	IF	CITATIONS
109	Effects of Sr/Ti-ratio in SrTiO3-based SOFC anodes investigated by the use of cone-shaped electrodes. Electrochimica Acta, 2006, 52, 1651-1661.	5.2	47
110	Electrical and electro-chemical characterisation of La0.99Fe1â^'x Ni x O3â^'δ perovskites. Journal of Solid State Electrochemistry, 2006, 10, 934-940.	2.5	23
111	Studies of Fe–Co based perovskite cathodes with different A-site cations. Solid State Ionics, 2006, 177, 1047-1051.	2.7	50
112	A study of Pr0.7Sr0.3Fe1â^'xNixO3â^'δ as a cathode material for SOFCs with intermediate operating temperature. Solid State Ionics, 2005, 176, 1013-1020.	2.7	56
113	LSFM perovskites as cathodes for the electrochemical reduction of NO. Solid State Ionics, 2005, 176, 915-920.	2.7	24
114	Charge disproportionation in (X0.6Sr0.4)0.99Fe0.8Co0.2O3â^1̂ perovskites (X=La, Pr, Sm, Gd). Solid State Ionics, 2005, 176, 1555-1561.	2.7	7
115	Electrochemical DeNOx in solid electrolyte cells—an overview. Applied Catalysis B: Environmental, 2005, 58, 33-39.	20.2	65
116	Oxidation of Methane and Hydrogen on Ce[sub 1â^'x]Gd[sub x]O[sub 2â^'Î] Flourrites. Electrochemical and Solid-State Letters, 2005, 8, A108.	2.2	6
117	Conversion of Hydrocarbons in Solid Oxide Fuel Cells. Annual Review of Materials Research, 2003, 33, 321-331.	9.3	190
118	Perovskites as Catalysts for the Selective Catalytic Reduction of Nitric Oxide with Propene: Relationship between Solid State Properties and Catalytic Activity. Journal of Catalysis, 2001, 199, 132-140.	6.2	27
119	Electrochemical reduction of NO and O2 on Cu/CuO. Journal of Applied Electrochemistry, 2000, 30, 193-200.	2.9	30
120	Electrochemical reduction of NO and O2 on oxide based electrodes. Ionics, 2000, 6, 340-345.	2.4	18
121	Electrochemical Exhaust Gas Purification. , 2000, , .		5
122	Perovskites as Cathodes for Nitric Oxide Reduction. Journal of the Electrochemical Society, 2000, 147, 2007.	2.9	46
123	Electrochemical Reactor for Exhaust Gas Purification. , 1999, , .		7
124	Mechanochemical Synthesis of Fe–S Materials. Journal of Solid State Chemistry, 1998, 138, 114-125.	2.9	60
125	Electrochemical Flue Gas Purification: A Review. SAE International Journal of Engines, 0, 14, .	0.4	0
126	Electrochemical Removal of NOx Using Oxide-Based Electrodes – A Review International Journal of Electrochemical Science, 0, , 9273-9280.	1.3	5

#	Article	IF	CITATIONS
127	Evaluation of strontium substituted lanthanum manganite-based solid oxide fuel cell cathodes using cone-shaped electrodes and electrochemical impedance spectroscopy. Journal of Electrochemical Science and Engineering, 0, , .	3.5	0