Graeme Gillies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3040855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attractive and Repulsive Electrostatic Forces between Positively Charged Latex Particles in the Presence of Anionic Linear Polyelectrolytes. Journal of Physical Chemistry B, 2010, 114, 3170-3177.	1.2	130
2	Charging and Aggregation of Positively Charged Latex Particles in the Presence of Anionic Polyelectrolytesâ€. Journal of Physical Chemistry B, 2007, 111, 8626-8633.	1.2	82
3	Direct measurements of particle–bubble interactions. Advances in Colloid and Interface Science, 2005, 114-115, 165-172.	7.0	79
4	Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential. Food Hydrocolloids, 2018, 79, 572-578.	5.6	67
5	Flocculation and Coalescence of Oil-in-Water Poly(dimethylsiloxane) Emulsions. Journal of Colloid and Interface Science, 2000, 227, 390-397.	5.0	65
6	Attractive Electrostatic Forces between Identical Colloidal Particles Induced by Adsorbed Polyelectrolytes. Journal of Physical Chemistry B, 2009, 113, 8458-8461.	1.2	63
7	An AFM Study of the Deformation and Nanorheology of Cross-Linked PDMS Droplets. Langmuir, 2002, 18, 1674-1679.	1.6	61
8	Physical stability, microstructure and rheology of sodium-caseinate-stabilized emulsions as influenced by protein concentration and non-adsorbing polysaccharides. Food Hydrocolloids, 2014, 36, 245-255.	5.6	61
9	Simple, One-Step Synthesis of Gold Nanowires in Aqueous Solution. Langmuir, 2005, 21, 12399-12403.	1.6	53
10	The heat stability of milk protein-stabilized oil-in-water emulsions: A review. Current Opinion in Colloid and Interface Science, 2017, 28, 63-73.	3.4	53
11	Contact angles and wetting behaviour of single micron-sized particles. Journal of Physics Condensed Matter, 2005, 17, S445-S464.	0.7	47
12	Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM. Advances in Colloid and Interface Science, 2004, 108-109, 197-205.	7.0	46
13	Determination of the Separation in Colloid Probe Atomic Force Microscopy of Deformable Bodies. Langmuir, 2001, 17, 7955-7956.	1.6	41
14	Structure and stability of sodium-caseinate-stabilized oil-in-water emulsions as influenced by heat treatment. Food Hydrocolloids, 2017, 66, 307-317.	5.6	36
15	Structure of β-lactoglobulin microgels formed during heating as revealed by small-angle X-ray scattering and light scattering. Food Hydrocolloids, 2011, 25, 1766-1774.	5.6	35
16	Aggregation behavior of partially crystalline oil-in-water emulsions: Part I – Characterization under steady shear. Food Hydrocolloids, 2015, 43, 521-528.	5.6	32
17	Surface and Capillary Forces Encountered by Zinc Sulfide Microspheres in Aqueous Electrolyte. Langmuir, 2005, 21, 5882-5886.	1.6	20
18	Revealing Contamination on AFM Cantilevers by Microdrops and Microbubbles. Langmuir, 2004, 20, 11824-11827.	1.6	19

GRAEME GILLIES

#	Article	IF	CITATIONS
19	Colloid Probe AFM Investigation of the Influence of Cross-Linking on the Interaction Behavior and Nano-Rheology of Colloidal Droplets. Langmuir, 2005, 21, 12342-12347.	1.6	18
20	Effect of sugar type and concentration on the heat coagulation of oil-in-water emulsions stabilized by milk-protein-concentrate. Food Hydrocolloids, 2014, 41, 332-342.	5.6	16
21	Influence of the Volume Fraction, Size and Surface Coating of Hard Spheres on the Microstructure and Rheological Properties of Model Mozzarella Cheese. Food Biophysics, 2017, 12, 33-44.	1.4	16
22	Changes in creep behavior and microstructure of model Mozzarella cheese during working. LWT - Food Science and Technology, 2017, 83, 184-192.	2.5	16
23	Measurement techniques for steady shear viscosity of Mozzarella-type cheeses at high shear rates and high temperature. International Dairy Journal, 2015, 47, 102-108.	1.5	10
24	Aggregation and coalescence of partially crystalline emulsion drops investigated using optical tweezers. Soft Matter, 2019, 15, 6383-6391.	1.2	10
25	Review: Deformation and Adhesion of Viscoelastic Particles: Theory and Experiment. Australian Journal of Chemistry, 2001, 54, 477.	0.5	9
26	Characterizing the rheological properties of mozzarella cheese at shear rate and temperature conditions relevant to pizza baking. LWT - Food Science and Technology, 2015, 64, 82-87.	2.5	9
27	Microstructural transformations in anisotropy and melt-stretch properties of low moisture part skim mozzarella cheese. International Dairy Journal, 2016, 62, 19-27.	1.5	9
28	Fractionation and characterisation of hard milk fat crystals using atomic force microscopy. Food Chemistry, 2019, 279, 98-104.	4.2	8
29	Simple transmission measurements discriminate instability processes in multiple emulsions. Soft Matter, 2011, 7, 2697.	1.2	6
30	Inside the ensemble: unlocking the potential of one-at-a-time experiments with lab-on-a-chip automation. Lab on A Chip, 2021, 21, 4401-4413.	3.1	4
31	Predictions of the shear modulus of cheese, a soft matter approach. Applied Rheology, 2019, 29, 58-68.	3.5	3
32	Revealing the Nanostructure of Glyceryl Tristearate Crystals by Atomic Force Microscopy. Crystal Growth and Design, 2019, 19, 513-519.	1.4	2
33	The Influence of Emulsion Droplet Interactions on the Structural, Material and Functional Properties of a Model Mozzarella Cheese. Food Biophysics, 2018, 13, 333-342.	1.4	0