Jonathan R Polimeni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3040751/publications.pdf

Version: 2024-02-01

147 papers

21,526 citations

47 h-index

53939

128 g-index

164 all docs

164 docs citations

164 times ranked 21667 citing authors

#	Article	IF	CITATIONS
1	A 31â€channel integrated "AC/DC―B ₀ shim and radiofrequency receive array coil for improved 7T MRI. Magnetic Resonance in Medicine, 2022, 87, 1074-1092.	1.9	14
2	Effect of vascular amyloid on white matter disease is mediated by vascular dysfunction in cerebral amyloid angiopathy. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1272-1281.	2.4	9
3	Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients. Scientific Data, 2022, 9, 7.	2.4	16
4	In vivo irreversible and reversible transverse relaxation rates in human cerebral cortex via line scans at 7 T with 250 micron resolution perpendicular to the cortical surface. Magnetic Resonance Imaging, 2022, 90, 44-52.	1.0	3
5	SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI. Neurolmage, 2022, 253, 119033.	2.1	31
6	Critical factors in achieving fineâ€scale functional <scp>MRI</scp> : Removing sources of inadvertent spatial smoothing. Human Brain Mapping, 2022, 43, 3311-3331.	1.9	9
7	Imaging of the pial arterial vasculature of the human brain in vivo using high-resolution 7T time-of-flight angiography. ELife, 2022, $11,\ldots$	2.8	22
8	Cerebellar atrophy and its implications on gait in cerebral amyloid angiopathy. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 802-807.	0.9	3
9	Long-Term Effects of Repeated Blast Exposure in United States Special Operations Forces Personnel: A Pilot Study Protocol. Journal of Neurotrauma, 2022, 39, 1391-1407.	1.7	4
10	Oxygen extraction efficiency and white matter lesion burden in older adults exhibiting radiological evidence of capillary shunting. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1933-1943.	2.4	3
11	Probing in vivo cortical myeloarchitecture in humans via lineâ€scan diffusion acquisitions at 7 T with 250â€500 micron radial resolution. Magnetic Resonance in Medicine, 2021, 85, 390-403.	1.9	18
12	Ultraâ€high spatial resolution BOLD fMRI in humans using combined segmentedâ€accelerated VFAâ€FLEET with a recursive RF pulse design. Magnetic Resonance in Medicine, 2021, 85, 120-139.	1.9	15
13	Dynamic distortion correction for functional MRI using FID navigators. Magnetic Resonance in Medicine, 2021, 85, 1294-1307.	1.9	16
14	Improving <i>in vivo</i> human cerebral cortical surface reconstruction using data-driven super-resolution. Cerebral Cortex, 2021, 31, 463-482.	1.6	17
15	Ground-truth "resting-state―signal provides data-driven estimation and correction for scanner distortion of fMRI time-series dynamics. NeuroImage, 2021, 227, 117584.	2.1	7
16	Lacunes, Microinfarcts, and Vascular Dysfunction in Cerebral Amyloid Angiopathy. Neurology, 2021, 96, e1646-e1654.	1.5	10
17	Efficient wholeâ€brain tractâ€specific T 1 mapping at 3T with sliceâ€shuffled inversionâ€recovery diffusionâ€weighted imaging. Magnetic Resonance in Medicine, 2021, 86, 738-753.	1.9	5
18	In vivo human whole-brain Connectom diffusion MRI dataset at 760 Âμm isotropic resolution. Scientific Data, 2021, 8, 122.	2.4	37

#	Article	IF	Citations
19	Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising. NeuroImage, 2021, 233, 117946.	2.1	11
20	A suite of neurophotonic tools to underpin the contribution of internal brain states in fMRI. Current Opinion in Biomedical Engineering, 2021, 18, 100273.	1.8	6
21	Altered Blood Flow in the Ophthalmic and Internal Carotid Arteries in Patients with Age-Related Macular Degeneration Measured Using Noncontrast MR Angiography at 7T. American Journal of Neuroradiology, 2021, 42, 1653-1660.	1.2	13
22	High-resolution fMRI at 7 Tesla: challenges, promises and recent developments for individual-focused fMRI studies. Current Opinion in Behavioral Sciences, 2021, 40, 96-104.	2.0	26
23	Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Progress in Neurobiology, 2021, 207, 102174.	2.8	49
24	7T Epilepsy Task Force Consensus Recommendations on the Use of 7T MRI in Clinical Practice. Neurology, 2021, 96, 327-341.	1.5	52
25	The global configuration of visual stimuli alters co-fluctuations of cross-hemispheric human brain activity. Journal of Neuroscience, 2021, 41, JN-RM-3214-20.	1.7	3
26	Investigating mechanisms of fast BOLD responses: The effects of stimulus intensity and of spatial heterogeneity of hemodynamics. NeuroImage, 2021, 245, 118658.	2.1	13
27	Simultaneous pure T2 and varying T2′-weighted BOLD fMRI using Echo Planar Time-resolved Imaging for mapping cortical-depth dependent responses. NeuroImage, 2021, 245, 118641.	2.1	9
28	Neuroscience applications of ultra-high-field magnetic resonance imaging: mesoscale functional imaging of the human brain. Advances in Magnetic Resonance Technology and Applications, 2021, 4, 573-588.	0.0	0
29	Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 501-512.	2.4	38
30	In vivo functional localization of the temporal monocular crescent representation in human primary visual cortex. Neurolmage, 2020, 209, 116516.	2.1	3
31	Impact of prospective motion correction, distortion correction methods and large vein bias on the spatial accuracy of cortical laminar fMRI at 9.4 Tesla. NeuroImage, 2020, 208, 116434.	2.1	23
32	Accelerated spinâ€echo functional MRI using multisection excitation by simultaneous spinâ€echo interleaving (MESSI) with complexâ€encoded generalized slice dithered enhanced resolution (cgSlider) simultaneous multislice echoâ€planar imaging. Magnetic Resonance in Medicine, 2020, 84, 206-220.	1.9	8
33	Advanced Neuroimaging to Unravel Mechanisms of Cerebral Small Vessel Diseases. Stroke, 2020, 51, 29-37.	1.0	21
34	DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning. NeuroImage, 2020, 219, 117017.	2.1	63
35	Resting-state "physiological networks― Neurolmage, 2020, 213, 116707.	2.1	111
36	Eye-selective fMRI activity in human primary visual cortex: Comparison between 3Ââ€∢T and 9.4Ââ€∢T, and effects across cortical depth. NeuroImage, 2020, 220, 117078.	2.1	13

#	Article	IF	CITATIONS
37	Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neurolmage, 2019, 202, 116091.	2.1	539
38	In vivo measurements of irreversible and reversible transverse relaxation rates in human basal ganglia at 7ÂT: making inferences about the microscopic and mesoscopic structure of iron and calcification deposits. NMR in Biomedicine, 2019, 32, e4140.	1.6	4
39	Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science, 2019, 366, 628-631.	6.0	584
40	7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Scientific Data, 2019, 6, 244.	2.4	179
41	Dependence of the MR signal on the magnetic susceptibility of blood studied with models based on real microvascular networks. Magnetic Resonance in Medicine, 2019, 81, 3865-3874.	1.9	12
42	Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data. NeuroImage, 2019, 189, 601-614.	2.1	41
43	Echo planar timeâ€resolved imaging (EPTI). Magnetic Resonance in Medicine, 2019, 81, 3599-3615.	1.9	75
44	Immunotherapy with ponezumab for probable cerebral amyloid angiopathy. Annals of Clinical and Translational Neurology, 2019, 6, 795-806.	1.7	49
45	Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction. Magnetic Resonance in Medicine, 2019, 82, 1343-1358.	1.9	40
46	Laminar (f)MRI: A short history and future prospects. NeuroImage, 2019, 197, 643-649.	2.1	45
47	Dependence of resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to the direction of B0 and anatomical axes. NeuroImage, 2019, 196, 337-350.	2.1	29
48	Teaching Neurolmages: In vivo visualization of Edinger comb and Wilson pencils. Neurology, 2019, 92, e1663-e1664.	1.5	16
49	On the analysis of rapidly sampled fMRI data. NeuroImage, 2019, 188, 807-820.	2.1	68
50	Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. Journal of Neurophysiology, 2019, 121, 1513-1534.	0.9	113
51	The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study. Brain Stimulation, 2019, 12, 911-921.	0.7	104
52	Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals. Neuron, 2018, 97, 925-939.e5.	3.8	113
53	Characterizing Signals Within Lesions and Mapping Brain Network Connectivity After Traumatic Axonal Injury: A 7 Tesla Resting-State FMRI Study. Brain Connectivity, 2018, 8, 288-298.	0.8	9
54	Neuroimaging with ultra-high field MRI: Present and future. NeuroImage, 2018, 168, 1-6.	2.1	33

#	Article	IF	Citations
55	Dualâ€polarity sliceâ€GRAPPA for concurrent ghost correction and slice separation in simultaneous multiâ€slice EPI. Magnetic Resonance in Medicine, 2018, 80, 1364-1375.	1.9	15
56	The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 2018, 32, 43-54.	1.9	1,282
57	Analysis strategies for high-resolution UHF-fMRI data. Neurolmage, 2018, 168, 296-320.	2.1	95
58	Relative latency and temporal variability of hemodynamic responses at the human primary visual cortex. Neurolmage, 2018, 164, 194-201.	2.1	34
59	Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. NeuroImage, 2018, 168, 412-426.	2.1	121
60	Advantages of cortical surface reconstruction using submillimeter 7ÂT MEMPRAGE. NeuroImage, 2018, 165, 11-26.	2.1	76
61	Optimized inversionâ€time schedules for quantitative T 1 measurements based on highâ€resolution multiâ€inversion EPI. Magnetic Resonance in Medicine, 2018, 79, 2101-2112.	1.9	13
62	Magnetic Resonance Imaging technology â€" bridging the gap between noninvasive human imaging and optical microscopy. Current Opinion in Neurobiology, 2018, 50, 250-260.	2.0	18
63	Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI. Neurolmage, 2018, 181, 279-291.	2.1	63
64	HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging. NeuroImage, 2017, 150, 162-176.	2.1	24
65	Reduction of across-run variability of temporal SNR in accelerated EPI time-series data through FLEET-based robust autocalibration. NeuroImage, 2017, 152, 348-359.	2.1	10
66	Impacting the effect of fMRI noise through hardware and acquisition choices – Implications for controlling false positive rates. NeuroImage, 2017, 154, 15-22.	2.1	38
67	Functional density and edge maps: Characterizing functional architecture in individuals and improving cross-subject registration. Neurolmage, 2017, 158, 346-355.	2.1	28
68	Coilâ€toâ€coil physiological noise correlations and their impact on functional MRI timeâ€series signalâ€toâ€noise ratio. Magnetic Resonance in Medicine, 2016, 76, 1708-1719.	1.9	21
69	Rapid brain MRI acquisition techniques at ultraâ€high fields . NMR in Biomedicine, 2016, 29, 1198-1221.	1.6	86
70	The pulsatility volume index: an indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150184.	1.6	17
71	Neuroimaging brainstem circuitry supporting cardiovagal response to pain: a combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150189.	1.6	39
72	In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 451-462.	1.1	59

#	Article	IF	CITATIONS
73	Cortical atrophy in patients with cerebral amyloid angiopathy: a case-control study. Lancet Neurology, The, 2016, 15, 811-819.	4.9	96
74	Intracortical depth analyses of frequency-sensitive regions of human auditory cortex using 7T fMRI. Neurolmage, 2016, 143, 116-127.	2.1	46
75	Fast fMRI can detect oscillatory neural activity in humans. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6679-E6685.	3.3	146
76	A 32â€channel combined RF and <i>B₀</i> shim array for 3T brain imaging. Magnetic Resonance in Medicine, 2016, 75, 441-451.	1.9	106
77	Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition. Magnetic Resonance in Medicine, 2016, 75, 665-679.	1.9	113
78	Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data. Neurolmage, 2016, 134, 338-354.	2.1	57
79	Dualâ€polarity GRAPPA for simultaneous reconstruction and ghost correction of echo planar imaging data. Magnetic Resonance in Medicine, 2016, 76, 32-44.	1.9	40
80	Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3. Journal of Neuroscience, 2016, 36, 1841-1857.	1.7	125
81	MGH–USC Human Connectome Project datasets with ultra-high b-value diffusion MRI. Neurolmage, 2016, 124, 1108-1114.	2.1	209
82	Rapid multi-orientation quantitative susceptibility mapping. Neurolmage, 2016, 125, 1131-1141.	2.1	52
83	A dual-polarity grappa kernel for the robust reconstruction of accelerated EPI data. , 2015, , .		0
84	Waveâ€CAIPI for highly accelerated 3D imaging. Magnetic Resonance in Medicine, 2015, 73, 2152-2162.	1.9	180
85	Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe. Journal of Neuroscience, 2015, 35, 3663-3675.	1.7	196
86	Toward an <i>In Vivo</i> Neuroimaging Template of Human Brainstem Nuclei of the Ascending Arousal, Autonomic, and Motor Systems. Brain Connectivity, 2015, 5, 597-607.	0.8	68
87	An anatomically realistic temperature phantom for radiofrequency heating measurements. Magnetic Resonance in Medicine, 2015, 73, 442-450.	1.9	40
88	Associations of Resting-State fMRI Functional Connectivity with Flow-BOLD Coupling and Regional Vasculature. Brain Connectivity, 2015, 5, 137-146.	0.8	54
89	A study-specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7Tesla. NeuroImage, 2014, 100, 710-714.	2.1	18
90	Wave-CAIPI enables highly accelerated 3D MRI. , 2014, , .		1

#	Article	IF	Citations
91	Fast quantitative susceptibility mapping with L1â€regularization and automatic parameter selection. Magnetic Resonance in Medicine, 2014, 72, 1444-1459.	1.9	110
92	Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. Magnetic Resonance in Medicine, 2014, 72, spcone-spcone.	1.9	0
93	Investigating the Capability to Resolve Complex White Matter Structures with High <i>b</i> Value Diffusion Magnetic Resonance Imaging on the MGH-USC Connectom Scanner. Brain Connectivity, 2014, 4, 718-726.	0.8	53
94	Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. Magnetic Resonance in Medicine, 2014, 72, 291-300.	1.9	52
95	Interslice leakage artifact reduction technique for simultaneous multislice acquisitions. Magnetic Resonance in Medicine, 2014, 72, 93-102.	1.9	229
96	Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal. NeuroImage, 2014, 84, 672-680.	2.1	51
97	Dynamic functional imaging of brain glucose utilization using fPET-FDG. NeuroImage, 2014, 100, 192-199.	2.1	123
98	Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7T. NeuroImage, 2014, 90, 60-73.	2.1	85
99	Underpinning the microvascular origin of BOLD-fMRI with two-photon microscopy. , 2014, , .		1
100	Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex. NeuroImage, 2013, 69, 87-100.	2.1	134
101	Sparsity-Promoting Calibration for GRAPPA Accelerated Parallel MRI Reconstruction. IEEE Transactions on Medical Imaging, 2013, 32, 1325-1335.	5.4	67
102	fMRI hemodynamics accurately reflects neuronal timing in the human brain measured by MEG. NeuroImage, 2013, 78, 372-384.	2.1	36
103	Whole-head rapid fMRI acquisition using echo-shifted magnetic resonance inverse imaging. Neurolmage, 2013, 78, 325-338.	2.1	35
104	FOCUSR: Feature Oriented Correspondence Using Spectral Regularization—A Method for Precise Surface Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 2143-2160.	9.7	64
105	The minimal preprocessing pipelines for the Human Connectome Project. Neurolmage, 2013, 80, 105-124.	2.1	4,042
106	Accelerated parallel magnetic resonance imaging reconstruction using joint estimation with a sparse signal model. , 2012 , , .		2
107	T2* mapping and B0 orientation-dependence at 7T reveal cyto- and myeloarchitecture organization of the human cortex. Neurolmage, 2012, 60, 1006-1014.	2.1	133
108	An implanted 8-channel array coil for high-resolution macaque MRI at 3T. NeuroImage, 2012, 62, 1529-1536.	2.1	46

#	Article	IF	CITATIONS
109	Blippedâ€controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced <i>g</i> å€factor penalty. Magnetic Resonance in Medicine, 2012, 67, 1210-1224.	1.9	1,144
110	Denoising sparse images from GRAPPA using the nullspace method. Magnetic Resonance in Medicine, 2012, 68, 1176-1189.	1.9	18
111	Physiological noise reduction using volumetric functional magnetic resonance inverse imaging. Human Brain Mapping, 2012, 33, 2815-2830.	1.9	26
112	Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. Annals of Neurology, 2012, 72, 76-81.	2.8	150
113	Combined compressed sensing and parallel mri compared for uniform and random cartesian undersampling of K-space., 2011,,.		5
114	The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 2011, 106, 1125-1165.	0.9	6,420
115	Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils. Neurolmage, 2011, 55, 597-606.	2.1	167
116	Regularizing GRAPPA using simultaneous sparsity to recover de-noised images. Proceedings of SPIE, $2011, \ldots$	0.8	2
117	32â€Channel RF coil optimized for brain and cervical spinal cord at 3 T. Magnetic Resonance in Medicine, 2011, 66, 1198-1208.	1.9	45
118	Evaluating sparsity penalty functions for combined compressed sensing and parallel MRI., 2011,,.		3
119	Atlas-based segmentation for globus pallidus internus targeting on low-resolution MRI. , 2011, 2011, 5706-9.		1
120	Fast Brain Matching with Spectral Correspondence. Lecture Notes in Computer Science, 2011, 22, 660-673.	1.0	20
121	Performance evaluation of a 32â€element head array with respect to the ultimate intrinsic SNR. NMR in Biomedicine, 2010, 23, 142-151.	1.6	53
122	<i>T ₂ -weighted 3D fMRI using <i>S</i> ₂ -SSFP at 7 tesla. Magnetic Resonance in Medicine, 2010, 63, 1015-1020.	1.9	34
123	Near-isometric flattening of brain surfaces. Neurolmage, 2010, 51, 694-703.	2.1	14
124	Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. NeuroImage, 2010, 52, 1334-1346.	2.1	378
125	Discrete Calculus., 2010,,.		172
126	Filtering on Graphs. , 2010, , 155-197.		1

#	Article	IF	Citations
127	Discrete Calculus: History and Future. , 2010, , 1-9.		O
128	Manifold Learning and Ranking. , 2010, , 243-266.		0
129	Introduction to Discrete Calculus. , 2010, , 13-89.		1
130	Measuring Networks. , 2010, , 267-289.		0
131	Building a Weighted Complex from Data. , 2010, , 125-154.		0
132	Circuit Theory and Other Discrete Physical Models. , 2010, , 91-122.		0
133	Clustering and Segmentation. , 2010, , 199-242.		0
134	96â€Channel receiveâ€only head coil for 3 Tesla: Design optimization and evaluation. Magnetic Resonance in Medicine, 2009, 62, 754-762.	1.9	237
135	Locating the functional and anatomical boundaries of human primary visual cortex. Neurolmage, 2009, 46, 915-922.	2.1	98
136	Predicting the location of entorhinal cortex from MRI. NeuroImage, 2009, 47, 8-17.	2.1	94
137	Exact Geodesics and Shortest Paths on Polyhedral Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31, 1006-1016.	9.7	28
138	A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magnetic Resonance in Medicine, 2008, 59, 1431-1439.	1.9	142
139	Sliceâ€selective RF pulses for in vivo <i>B</i> inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16â€element coil. Magnetic Resonance in Medicine, 2008, 60, 1422-1432.	1.9	140
140	Accurate prediction of V1 location from cortical folds in a surface coordinate system. NeuroImage, 2008, 39, 1585-1599.	2.1	221
141	Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing. Neurolmage, 2008, 42, 230-247.	2.1	45
142	The Intrinsic Shape of Human and Macaque Primary Visual Cortex. Cerebral Cortex, 2008, 18, 2586-2595.	1.6	35
143	Multi-area visuotopic map complexes in macaque striate and extra-striate cortex. Vision Research, 2006, 46, 3336-3359.	0.7	73
144	Physical limits to spatial resolution of optical recording: Clarifying the spatial structure of cortical hypercolumns. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4158-4163.	3.3	62

#	Article	IF	CITATIONS
145	Neural representation of sensory data. Behavioral and Brain Sciences, 2002, 25, 207-208.	0.4	0
146	The V1–V2–V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex. Neural Networks, 2002, 15, 1157-1163.	3.3	45
147	Static and dynamic BOLD fMRI components along white matter fibre tracts and their dependence on the orientation of the local diffusion tensor axis relative to the B ₀ -field. Journal of Cerebral Blood Flow and Metabolism, 0, , 0271678X2211062.	2.4	0