
Enrico Arrigoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3040372/publications.pdf Version: 2024-02-01

ENDICO ADDICONI

#	Article	IF	CITATIONS
1	Efficient energy resolved quantum master equation for transport calculations in large strongly correlated systems. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 075301.	2.1	6
2	Bayesian source separation of electrical bioimpedance signals. Biomedical Signal Processing and Control, 2021, 67, 102541.	5.7	2
3	Nonequilibrium pseudogap Anderson impurity model: A master equation tensor network approach. Physical Review B, 2020, 101, .	3.2	13
4	First-principles quantum transport simulation of CuPc on Au(111) and Ag(111). Physical Review B, 2019, 99, .	3.2	7
5	Auxiliary master equation approach within stochastic wave functions: Application to the interacting resonant level model. Physical Review E, 2019, 99, 043303.	2.1	5
6	Nonequilibrium Green's functions and their relation to the negative differential conductance in the interacting resonant level model. Physical Review B, 2019, 99, .	3.2	2
7	Markovian treatment of non-Markovian dynamics of open Fermionic systems. New Journal of Physics, 2019, 21, 123035.	2.9	22
8	Nonequilibrium Kondo effect in a magnetic field: auxiliary master equation approach. New Journal of Physics, 2018, 20, 013030.	2.9	22
9	Impact ionization processes in the steady state of a driven Mott-insulating layer coupled to metallic leads. Physical Review B, 2018, 97, .	3.2	21
10	PLANCKS 2017—Physics League Across Numerous Countries for Kick-Ass Students. European Journal of Physics, 2018, 39, 064001.	0.6	0
11	Master Equations Versus Keldysh Green's Functions for Correlated Quantum Systems Out of Equilibrium. Springer Series in Solid-state Sciences, 2018, , 121-188.	0.3	1
12	Charge redistribution in correlated heterostuctures within nonequilibrium real-space dynamical mean-field theory. Physical Review B, 2018, 98, .	3.2	8
13	Thermoelectric properties of a strongly correlated layer. Physical Review B, 2017, 96, .	3.2	5
14	First-principles molecular transport calculation for the benzenedithiolate molecule. New Journal of Physics, 2017, 19, 103007.	2.9	3
15	Optimized auxiliary representation of non-Markovian impurity problems by a Lindblad equation. New Journal of Physics, 2017, 19, 063005.	2.9	31
16	Quasiparticle excitations in steady state transport across a correlated layer. Journal of Physics: Conference Series, 2016, 696, 012003.	0.4	8
17	Nonequilibrium variational cluster perturbation theory: Quench dynamics of the quantum Ising model. Physical Review B, 2016, 94, .	3.2	1
18	Resonance effects in correlated multilayer heterostructures. Physical Review B, 2016, 94, .	3.2	7

#	Article	IF	CITATIONS
19	Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime. Physical Review B, 2016, 94, .	3.2	22
20	Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit. Physical Review B, 2016, 94, .	3.2	40
21	Master equation based steady-state cluster perturbation theory. Physical Review B, 2015, 92, .	3.2	6
22	Current characteristics of a one-dimensional Hubbard chain: Role of correlation and dissipation. Physical Review B, 2015, 92, .	3.2	12
23	Transport through a correlated interface: Auxiliary master equation approach. Physical Review B, 2015, 92, .	3.2	21
24	Nonequilibrium spatiotemporal formation of the Kondo screening cloud on a lattice. Physical Review B, 2015, 91, .	3.2	31
25	Auxiliary master equation approach within matrix product states: Spectral properties of the nonequilibrium Anderson impurity model. Physical Review B, 2015, 92, .	3.2	58
26	Fate of the false Mott-Hubbard transition in two dimensions. Physical Review B, 2015, 91, .	3.2	129
27	Auxiliary master equation approach to nonequilibrium correlated impurities. Physical Review B, 2014, 89, .	3.2	73
28	Effects of electronic correlations and magnetic field on a molecular ring out of equilibrium. Physical Review B, 2014, 89, .	3.2	3
29	Nonequilibrium Dynamical Mean-Field Theory: An Auxiliary Quantum Master Equation Approach. Physical Review Letters, 2013, 110, 086403.	7.8	105
30	Spin injection and filtering in halfmetal/semiconductor (CrAs/GaAs) heterostructures. , 2013, , .		0
31	Nonequilibrium self-energy functional theory. Physical Review B, 2013, 88, .	3.2	18
32	Vibration-mediated correlation effects in the transport properties of a benzene molecule. Physical Review B, 2013, 88, .	3.2	9
33	Steady-state and quench-dependent relaxation of a quantum dot coupled to one-dimensional leads. Physical Review B, 2013, 88, .	3.2	14
34	Non-linear transport through a strongly correlated quantum dot. , 2012, , .		2
35	Characterization of Mott-insulating and superfluid phases in the one-dimensional Bose-Hubbard model. Physical Review A, 2012, 85, .	2.5	50
36	Time-reversal symmetry breaking phase in the Hubbard model: A variational cluster approach study. Physical Review B, 2012, 85, .	3.2	8

#	Article	IF	CITATIONS
37	Steady-state spectra, current, and stability diagram of a quantum dot: A nonequilibrium variational cluster approach. Physical Review B, 2012, 86, .	3.2	19
38	Variational cluster approach to the single-impurity Anderson model. Physical Review B, 2012, 85, .	3.2	11
39	Correlation-induced Suppression of Bilayer Splitting in High-T c Cuprates: A Variational Cluster Approach. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1769-1774.	1.8	1
40	Polaritonic properties of the Jaynes–Cummings lattice model in two dimensions. Computer Physics Communications, 2011, 182, 2036-2040.	7.5	2
41	Nonequilibrium steady state for strongly correlated many-body systems: Variational cluster approach. Physical Review B, 2011, 84, .	3.2	33
42	Emission characteristics of laser-driven dissipative coupled-cavity systems. Physical Review A, 2011, 83, . Electronic correlations in short-period (CrAs) <mml:math< td=""><td>2.5</td><td>47</td></mml:math<>	2.5	47
43	xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.2	13
44	Extended self-energy functional approach for strongly correlated lattice bosons in the superfluid phase. Physical Review B, 2011, 84, .	3.2	14
45	Variational cluster approach for strongly correlated lattice bosons in the superfluid phase. Physical Review B, 2011, 83, .	3.2	26
46	Strong enhancement of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:math> -wave superconducting state in the three-band Hubbard model coupled to an apical oxygen phonon. Physical Review B, 2011, 83,	3.2	8
47	The 3-band Hubbard-model versus the 1-band model for the high-T c cuprates: Pairing dynamics, superconductivity and the ground-state phase diagram. European Physical Journal: Special Topics, 2010, 188, 15-32.	2.6	29
48	Excitations in disordered bosonic optical lattices. Physical Review A, 2010, 82, .	2.5	9
49	Quantum phase transition and excitations of the Tavis-Cummings lattice model. Physical Review B, 2010, 82, .	3.2	14
50	Benchmarking the variational cluster approach by means of the one-dimensional Bose-Hubbard model. Physical Review B, 2010, 81, .	3.2	15
51	Spectral properties of strongly correlated bosons in two-dimensional optical lattices. Physical Review B, 2010, 81, .	3.2	29
52	Half-metallicity in NiMnSb: A variational cluster approach with <i>ab initio</i> parameters. Physical Review B, 2010, 81, .	3.2	20
53	Theory of two-particle excitations and the magnetic susceptibility in high-T c cuprate superconductors. Europhysics Letters, 2010, 89, 27005.	2.0	10
54	Spectral properties of coupled cavity arrays in one dimension. Physical Review B, 2010, 81, .	3.2	25

#	Article	IF	CITATIONS
55	Majority-spin nonquasiparticle states in half-metallic ferrimagnetMn2VAl. Physical Review B, 2009, 79, .	3.2	22
56	Dispersive spectrum and orbital order of spinless <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>-band fermions in an optical lattice. Physical Review B, 2009, 79, .</mml:math 	3.2	13
57	Phase diagram and single-particle spectrum of CuO ₂ high- <i>T</i> _c layers: variational cluster approach to the three-band Hubbard model. New Journal of Physics, 2009, 11, 055066.	2.9	44
58	Rare-earth impurities in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Co</mml:mtext></mml:mrow><mml:mn Improving half-metallicity at finite temperatures. Physical Review B, 2009, 80, .</mml:mn </mml:msub></mml:mrow></mml:math>	>2< þom nl:n	nn>ø/mml:msı
59	Single-particle spectral function of the Hubbard chain: frustration induced. Chinese Physics B, 2009, 18, 2475-2480.	1.4	1
60	Titanium nitride: A correlated metal at the threshold of a Mott transition. Physical Review B, 2009, 79, .	3.2	32
61	Model for the Magnetic Order and Pairing Channels in Fe Pnictide Superconductors. Physical Review Letters, 2008, 101, 237004.	7.8	127
62	Absence of Hole Confinement in Transition-Metal Oxides with Orbital Degeneracy. Physical Review Letters, 2008, 100, 066403.	7.8	57
63	Nonquasiparticle States in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>Co</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>MnSithrough Magnetic Tunnel Junction Spectroscopy Measurements. Physical Review Letters, 2008, 100, 086402.</mml:mi></mml:math>	nl:mi>7.8	nl:math>Evide
64	Phase separation and competition of superconductivity and magnetism in the two-dimensional Hubbard model: From strong to weak coupling. Physical Review B, 2007, 76, .	3.2	57
65	Superconducting Gap in the Hubbard Model and the Two-Gap Energy Scales of High-TcCuprate Superconductors. Physical Review Letters, 2007, 99, 257002.	7.8	26
66	Half-metallic ferromagnetism and spin polarization inCrO2. Physical Review B, 2007, 75, .	3.2	67
67	A controlled route to the competing phases and the single-particle spectral function in the ground state of the 2D Hubbard model. Physica C: Superconductivity and Its Applications, 2007, 460-462, 248-251.	1.2	Ο
68	Variational cluster treatment of the three-band Hubbard model: Electron vs. hole doping. Physica C: Superconductivity and Its Applications, 2007, 460-462, 981-982.	1.2	1
69	Enhancement of anisotropic electron–phonon coupling in the cuprates. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1119-1120.	1.2	0
70	Electron–phonon interaction in the strongly correlated Hubbard model. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1117-1118.	1.2	0
71	Electron–spin-fluctuation interaction in the 2D one-band Hubbard model. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1061-1062.	1.2	0
72	Antiferromagnetic to superconducting phase transition in the hole- and electron-doped Hubbard model at zero temperature. Physical Review B, 2006, 74, .	3.2	129

#	Article	IF	CITATIONS
73	Variational cluster approach to the Hubbard model: Phase-separation tendency and finite-size effects. Physical Review B, 2006, 74, .	3.2	77
74	Electron Correlations and the Minority-Spin Band Gap in Half-Metallic Heusler Alloys. Physical Review Letters, 2006, 96, 137203.	7.8	61
75	Correlated band structure of electron-doped cuprate materials. Low Temperature Physics, 2006, 32, 457-461.	0.6	5
76	Correlated band structure and the ground-state phase diagram in high- cuprates. Physica B: Condensed Matter, 2006, 378-380, 60-63.	2.7	4
77	Phase separation and pseudogap in electron-doped cuprates: A variational cluster perturbation analysis. Physica B: Condensed Matter, 2006, 378-380, 432-433.	2.7	1
78	Renormalization of the electron-spin-fluctuation interaction in thetâ^'t′â^'UHubbard model. Physical Review B, 2006, 74, .	3.2	9
79	Half-Metallic Ferromagnetism Induced by Dynamic Electron Correlations in VAs. Physical Review Letters, 2006, 96, 197203.	7.8	37
80	Phasediagram and Scaling Properties of the Projected SO(5) Model in Three Dimensions. , 2005, , 289-300.		0
81	Weak phase separation and the pseudogap in the electron-doped cuprates. Europhysics Letters, 2005, 72, 117-123.	2.0	54
82	Competition between charge-density waves and superconductivity in striped systems. Physica B: Condensed Matter, 2005, 359-361, 623-625.	2.7	0
83	Role of vertex corrections in the spin-fluctuation–mediated pairing mechanism. Europhysics Letters, 2005, 71, 959-965.	2.0	5
84	CUHE: Electron-Spin Interaction in High-Tc Superconductors. , 2005, , 205-212.		0
85	OOPCV: Phasediagram and Scaling Properties of the Projected SO(5) Model in Three Dimensions. , 2005, , 263-273.		0
86	Mechanism of high-temperature superconductivity in a striped Hubbard model. Physical Review B, 2004, 69, .	3.2	79
87	Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions. Physical Review B, 2004, 70, .	3.2	146
88	Antiferromagnetic and superconducting gaps and their interrelation in high-Tc cuprates. Annalen Der Physik, 2003, 12, 320-338.	2.4	0
89	Object-Oriented C++ Class Library for Many Body Physics on Finite Lattices and a First Application to High-Temperature Superconductivity. , 2003, , 307-326.		0
90	The Cluster-Perturbation-Theory and its Application to Strongly-Correlated Materials. , 2003, , 289-305.		0

#	Article	IF	CITATIONS
91	Phase Diagram and Dynamics of the Projected SO(5) Symmetric Model of High-TcSuperconductivity. Physical Review Letters, 2002, 88, 057003.	7.8	23
92	Stripes and superconducting pairing in thetâ~'Jmodel with Coulomb interactions. Physical Review B, 2002, 65, .	3.2	29
93	Evolution of the stripe phase as a function of doping from a theoretical analysis of angle-resolved photoemission data. Physical Review B, 2002, 65, .	3.2	44
94	Antiferromagnetism and Hole Pair Checkerboard in the Vortex State of HighTcSuperconductors. Physical Review Letters, 2002, 89, 137004.	7.8	85
95	Pair phase fluctuations and the pseudogap. Physical Review B, 2002, 66, .	3.2	32
96	Dynamical properties and the phase diagram of the projected SO(5)-symmetric model of high-Tc superconductors. Journal of Physics and Chemistry of Solids, 2002, 63, 1365-1370.	4.0	1
97	Where do holes go in doped antiferromagnets and what is their relationship to superconductivity?. Journal of Physics and Chemistry of Solids, 2002, 63, 2207-2212.	4.0	5
98	Spectral Properties of High-Tc Cuprates via a Cluster-Perturbation Approach. Journal of Low Temperature Physics, 2002, 126, 949-959.	1.4	14
99	Self-Organized Quasi-One Dimensional Structures in High-Temperature Superconductors: the Stripe Phase. , 2002, , 307-318.		0
100	Spin-wave spectrum of a two-dimensional itinerant electron system: Analytic results for the incommensurate spiral phase in the strong-coupling limit. European Physical Journal B, 2001, 19, 433-448.	1.5	1
101	Projected SO(5)-theory and the interrelation of superconducting and antiferromagnetic gaps in high-Tc compounds. Physica B: Condensed Matter, 2000, 280, 184-188.	2.7	2
102	STRIPES IN DOPED ANTIFERROMAGNETS: BOND-CENTERED VERSUS SITE-CENTERED. International Journal of Modern Physics B, 2000, 14, 3783-3790.	2.0	5
103	Interrelation of Superconducting and Antiferromagnetic Gaps in High-TcCompounds: A Test Case for the SO(5) Theory. Physical Review Letters, 2000, 85, 824-827.	7.8	21
104	Critical properties of projected SO(5) models at finite temperatures. Physical Review B, 2000, 62, 11770-11777.	3.2	17
105	Stripes in Doped Antiferromagnets: Single-Particle Spectral Weight. Physical Review Letters, 2000, 85, 2585-2588.	7.8	66
106	t-U-Wmodel of adx2â^'y2superconductor in the proximity of an antiferromagnetic Mott insulator: Diagrammatic studies versus quantum Monte Carlo simulations. Physical Review B, 2000, 62, 12395-12407.	3.2	0
107	Crossover to Fermi-liquid behavior for weakly coupled Luttinger liquids in the anisotropic large-dimension limit. Physical Review B, 2000, 61, 7909-7929.	3.2	29
108	Renormalized SO(5) Symmetry in Ladders with Next-Nearest-Neighbor Hopping. Physical Review Letters, 1999, 82, 2115-2118.	7.8	27

#	Article	IF	CITATIONS
109	Crossover from Luttinger- to Fermi-Liquid Behavior in Strongly Anisotropic Systems in Large Dimensions. Physical Review Letters, 1999, 83, 128-131.	7.8	44
110	Interplane magnetic coupling effects in the multilattice compoundY2Ba4Cu7O15. Physical Review B, 1999, 59, R685-R688.	3.2	2
111	Magnetic properties ofYBa2Cu3O7â^´Î în a self-consistent approach: Comparison with quantum Monte Carlo simulations and experiments. Physical Review B, 1999, 59, 6534-6544.	3.2	2
112	SO(5) theory of high-Tc superconductivity: models and experiments. Physica C: Superconductivity and Its Applications, 1999, 317-318, 175-184.	1.2	3
113	Magnetic fluctuations in coupled inequivalent Hubbard layers as a model for. European Physical Journal B, 1999, 8, 195-205.	1.5	2
114	Projected SO(5) models. Physical Review B, 1999, 60, 13070-13084.	3.2	46
115	Universal scaling behavior of coupled chains of interacting fermions. Physical Review B, 1998, 57, 6360-6369.	3.2	9
116	Systematic numerical study of spin-charge separation in one dimension. Physical Review B, 1998, 57, 6370-6375.	3.2	56
117	Interchain Coherence of Coupled Luttinger Liquids at all Orders in Perturbation Theory. Physical Review Letters, 1998, 80, 790-793.	7.8	19
118	Electron Transport in Coupled Chains of Interacting Fermions with Impurities. Physical Review Letters, 1997, 79, 2297-2300.	7.8	4
119	Electron transport in dirty multi-channel systems. Zeitschrift Für Physik B-Condensed Matter, 1996, 103, 177-180.	1.1	0
120	Spin and charge excitations in a three-legs fermionic ladder: a renormalization-group study. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 215, 91-96.	2.1	36
121	Phase diagram of three fermionic chains: A renormalizationâ€group study. Physica Status Solidi (B): Basic Research, 1996, 195, 425-432.	1.5	12
122	Correct continuum limit of the functional-integral representation for the four-slave-boson approach to the Hubbard model: Paramagnetic phase. Physical Review B, 1995, 52, 2428-2462.	3.2	12
123	Exact criterion for choosing the hopping operator in the four-slave-boson approach. Physical Review B, 1995, 52, 13707-13710.	3.2	3
124	Correct formulation of the 1/Nexpansion for the slave-boson approach within the functional integral. Physical Review B, 1994, 50, 2700-2703.	3.2	34
125	Implementing the four-slave-boson approach with the correct continuum limit of the functional integral. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2255-2256.	1.2	0
126	Functional-integral formulation of the slave-boson approach: Beyond the mean-field treatment with the correct continuum limit. Physics Reports, 1994, 241, 291-369.	25.6	29

#	Article	IF	CITATIONS
127	Anomalous pressure dependence of the La2CuO4 superexchange interaction: An evidence of band antiferromagnetism?. Solid State Communications, 1993, 87, 237-240.	1.9	1
128	Beyond the Gutzwiller approximation in the slave-boson approach: Inclusion of fluctuations with the correct continuum limit of the functional integral. Physical Review Letters, 1993, 71, 3178-3181.	7.8	29
129	Spin-wave spectrum of a two-dimensional itinerant-electron antiferromagnet based on aCuO2layer: Approximate mapping onto an effective Heisenberg model. Physical Review B, 1992, 45, 7816-7827.	3.2	2
130	Incommensurate antiferromagnetism within a slave-boson approach to a two-dimensional Hubbard Hamiltonian. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1691-1692.	1.2	0
131	Doping-induced incommensurate antiferromagnetism in a Mott-Hubbard insulator. Physical Review B, 1991, 44, 7455-7465.	3.2	81
132	Antiferromagnetism ofCuO2layers within a slave-boson approach. Physical Review B, 1990, 41, 4838-4841.	3.2	12
133	Itinerant vs. localized antiferromagnetism of CuO 2 layers. Physica C: Superconductivity and Its Applications, 1989, 162-164, 785-786.	1.2	0