
Yi Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3040357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoporous Gold Leaf: ?Ancient Technology?/Advanced Material. Advanced Materials, 2004, 16, 1897-1900.	11.1	727
2	Low Temperature CO Oxidation over Unsupported Nanoporous Gold. Journal of the American Chemical Society, 2007, 129, 42-43.	6.6	586
3	Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders:  Control over Size, Shape, and Structure via Hydrothermal Synthesis. Chemistry of Materials, 2001, 13, 435-440.	3.2	457
4	Nanoporous Metals with Controlled Multimodal Pore Size Distribution. Journal of the American Chemical Society, 2003, 125, 7772-7773.	6.6	438
5	Metallic Mesoporous Nanocomposites for Electrocatalysis. Journal of the American Chemical Society, 2004, 126, 6876-6877.	6.6	410
6	Nanoporous Metals for Catalytic and Optical Applications. MRS Bulletin, 2009, 34, 569-576.	1.7	378
7	Subâ€Micrometerâ€Thick Allâ€Solidâ€State Supercapacitors with High Power and Energy Densities. Advanced Materials, 2011, 23, 4098-4102.	11.1	343
8	Nanostructured Porous Gold for Methanol Electro-Oxidation. Journal of Physical Chemistry C, 2007, 111, 10382-10388.	1.5	342
9	Solvothermal Elemental Direct Reaction to CdE (E = S, Se, Te) Semiconductor Nanorod. Inorganic Chemistry, 1999, 38, 1382-1387.	1.9	333
10	Nonaqueous Synthesis of CdS Nanorod Semiconductor. Chemistry of Materials, 1998, 10, 2301-2303.	3.2	310
11	Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nature Energy, 2017, 2, .	19.8	302
12	Nanoporous Metals by Dealloying Multicomponent Metallic Glasses. Chemistry of Materials, 2008, 20, 4548-4550.	3.2	272
13	Superaerophobic Electrodes for Direct Hydrazine Fuel Cells. Advanced Materials, 2015, 27, 2361-2366.	11.1	232
14	Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Physical Chemistry Chemical Physics, 2010, 12, 239-246.	1.3	200
15	Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochemistry Communications, 2009, 11, 1365-1368.	2.3	195
16	Ultralowâ€Platinum‣oading Highâ€Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures. Advanced Materials, 2010, 22, 1845-1848.	11.1	189
17	Self-powered H2 production with bifunctional hydrazine as sole consumable. Nature Communications, 2018, 9, 4365.	5.8	178
18	3D binder-free Cu ₂ O@Cu nanoneedle arrays for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18229-18235.	5.2	177

#	Article	IF	CITATIONS
19	Porous AgCl/Ag Nanocomposites with Enhanced Visible Light Photocatalytic Properties. Journal of Physical Chemistry C, 2010, 114, 3175-3179.	1.5	174
20	General Synthesis and Phase Control of Metal Molybdate Hydrates MMoO ₄ · <i>n</i> H ₂ O (M = Co, Ni, Mn, <i>n</i> = 0, 3/4, 1) Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and Electrochemical Properties. Inorganic Chemistry, 2008, 47, 7813-7823.	1.9	168
21	Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation. Chemistry of Materials, 2007, 19, 5827-5829.	3.2	163
22	Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy and Environmental Science, 2012, 5, 5281-5286.	15.6	161
23	Research on unsupported nanoporous gold catalyst for CO oxidation. Journal of Catalysis, 2007, 252, 243-248.	3.1	160
24	Aerobic Oxidation of <scp>d</scp> -Glucose on Support-Free Nanoporous Gold. Journal of Physical Chemistry C, 2008, 112, 9673-9678.	1.5	159
25	A Threeâ€Dimensional Goldâ€Decorated Nanoporous Copper Core–Shell Composite for Electrocatalysis and Nonenzymatic Biosensing. Advanced Functional Materials, 2010, 20, 2279-2285.	7.8	159
26	Nanotubular Mesoporous Bimetallic Nanostructures with Enhanced Electrocatalytic Performance. Advanced Materials, 2009, 21, 2165-2169.	11.1	152
27	Immobilization of Laccase on Nanoporous Gold: Comparative Studies on the Immobilization Strategies and the Particle Size Effects. Journal of Physical Chemistry C, 2009, 113, 2521-2525.	1.5	150
28	Nanotubular Mesoporous PdCu Bimetallic Electrocatalysts toward Oxygen Reduction Reaction. Chemistry of Materials, 2009, 21, 3110-3116.	3.2	147
29	Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction. Nano Energy, 2019, 58, 834-841.	8.2	145
30	Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy, 2018, 44, 371-377.	8.2	138
31	Adsorption of Laccase on the Surface of Nanoporous Gold and the Direct Electron Transfer between Them. Journal of Physical Chemistry C, 2008, 112, 14781-14785.	1.5	133
32	A Novel Chemical Route to ZnTe Semiconductor Nanorods. Advanced Materials, 1999, 11, 847-850.	11.1	126
33	Nanoporous PtRu Alloys for Electrocatalysis. Langmuir, 2010, 26, 7437-7443.	1.6	125
34	Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Bioresource Technology, 2011, 102, 6352-6355.	4.8	124
35	3D Architectures of Iron Molybdate: Phase Selective Synthesis, Growth Mechanism, and Magnetic Properties. Chemistry - A European Journal, 2007, 13, 746-753.	1.7	122
36	Ruthenium–platinum core–shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy, 2016, 21, 247-257.	8.2	121

Yi Ding

#	Article	IF	CITATIONS
37	Green Synthesis of Large-Scale Highly Ordered Core@Shell Nanoporous Au@Ag Nanorod Arrays as Sensitive and Reproducible 3D SERS Substrates. ACS Applied Materials & Interfaces, 2014, 6, 15667-15675.	4.0	120
38	Photophysical properties of ZnS quantum dots. Journal of Physics and Chemistry of Solids, 1999, 60, 13-15.	1.9	119
39	A Reduction-Pyrolysis-Catalysis Synthesis of Diamond. , 1998, 281, 246-247.		117
40	Electrocatalytic oxidation of d-glucose at nanoporous Au and Au–Ag alloy electrodes in alkaline aqueous solutions. Electrochimica Acta, 2009, 54, 7286-7293.	2.6	112
41	Atomic Observation of Catalysis-Induced Nanopore Coarsening of Nanoporous Gold. Nano Letters, 2014, 14, 1172-1177.	4.5	109
42	A general corrosion route to nanostructured metal oxides. Nanoscale, 2010, 2, 906.	2.8	108
43	Template-free Synthesis of Single-Crystalline-like CeO ₂ Hollow Nanocubes. Crystal Growth and Design, 2008, 8, 4449-4453.	1.4	105
44	Immobilization of Lipases onto Magnetic Fe ₃ O ₄ Nanoparticles for Application in Biodiesel Production. ChemSusChem, 2009, 2, 947-950.	3.6	102
45	A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy, 2020, 70, 104550.	8.2	101
46	Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. Journal of Power Sources, 2012, 197, 325-329.	4.0	100
47	Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Research, 2018, 11, 1714-1721.	5.8	100
48	Characterization of Nanoporous Gold Electrodes for Bioelectrochemical Applications. Langmuir, 2012, 28, 2251-2261.	1.6	96
49	Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bulletin, 2018, 43, 43-48.	1.7	96
50	Rechargeable Al–CO ₂ Batteries for Reversible Utilization of CO ₂ . Advanced Materials, 2018, 30, e1801152.	11.1	96
51	Interface Reaction Route to Two Different Kinds of CeO ₂ Nanotubes. Inorganic Chemistry, 2008, 47, 723-728.	1.9	95
52	Ultrafine nanoporous PdFe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. Journal of Materials Chemistry A, 2013, 1, 3620.	5.2	95
53	A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe. Inorganic Chemistry, 1998, 37, 2844-2845.	1.9	93
54	Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. Chemical Science, 2014, 5, 403-409.	3.7	93

#	Article	IF	CITATIONS
55	In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InformaÄnÃ-Materiály, 2022, 4, .	8.5	93
56	Enhanced Photoelectrocatalytic Activity of Methanol Oxidation on TiO ₂ -Decorated Nanoporous Gold. Journal of Physical Chemistry C, 2009, 113, 16138-16143.	1.5	89
57	Flexible Lithium–Air Battery in Ambient Air with an Inâ€Situ Formed Gel Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 16131-16135.	7.2	89
58	Room-temperature conversion route to nanocrystalline mercury chalcogenides HgE (E=S,Se,Te). Journal of Physics and Chemistry of Solids, 1999, 60, 965-968.	1.9	88
59	Facile Fabrication of Ultrathin Pt Overlayers onto Nanoporous Metal Membranes via Repeated Cu UPD and in Situ Redox Replacement Reaction. Langmuir, 2009, 25, 561-567.	1.6	88
60	A novel nanoporous gold modified electrode for the selective determination of dopamine in the presence of ascorbic acid. Colloids and Surfaces B: Biointerfaces, 2009, 69, 105-108.	2.5	87
61	Visualizing Under oordinated Surface Atoms on 3D Nanoporous Gold Catalysts. Advanced Materials, 2016, 28, 1753-1759.	11.1	85
62	Unsupported nanoporous gold for heterogeneous catalysis. Catalysis Science and Technology, 2013, 3, 2862.	2.1	82
63	Self-Supported Hierarchical Nanostructured NiFe-LDH and Cu ₃ P Weaving Mesh Electrodes for Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 380-388.	3.2	82
64	Porous Mn ₂ O ₃ cathode for highly durable Li–CO ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 20829-20835.	5.2	81
65	Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine. Inorganic Chemistry, 1999, 38, 4737-4740.	1.9	79
66	In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Research, 2016, 9, 1856-1865.	5.8	78
67	Epitaxial Casting of Nanotubular Mesoporous Platinum. Angewandte Chemie - International Edition, 2005, 44, 4002-4006.	7.2	77
68	Electrocatalytic activity of bimetallic platinum–gold catalysts fabricated based on nanoporous gold. Physical Chemistry Chemical Physics, 2008, 10, 3250.	1.3	76
69	Dealloying to Nanoporous Silver and Its Implementation as a Template Material for Construction of Nanotubular Mesoporous Bimetallic Nanostructures. ChemPhysChem, 2010, 11, 3320-3328.	1.0	73
70	Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Scientific Reports, 2015, 5, 7699.	1.6	72
71	Solvothermal growth of vaterite in the presence of ethylene glycol, 1,2-propanediol and glycerin. Journal of Crystal Growth, 2002, 236, 357-362.	0.7	71
72	In Situ Synthesis of C/Cu/ZnO Porous Hybrids as Anode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 1525-1532.	4.0	71

#	Article	IF	CITATIONS
73	Enhancing the performance of MnO by double carbon modification for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2016, 4, 920-925.	5.2	70
74	Fine-Tuning the Electronic Structure of Dealloyed PtCu Nanowires for Efficient Methanol Oxidation Reaction. ACS Catalysis, 2021, 11, 14428-14438.	5.5	68
75	Gellan gel beads containing magnetic nanoparticles: An effective biosorbent for the removal of heavy metals from aqueous system. Bioresource Technology, 2009, 100, 2301-2304.	4.8	67
76	Tailoring the Structure and Property of Pt-Decorated Nanoporous Gold by Thermal Annealing. Journal of Physical Chemistry C, 2009, 113, 7379-7384.	1.5	67
77	Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves. Scientific Reports, 2012, 2, 941.	1.6	67
78	Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities. Angewandte Chemie - International Edition, 2019, 58, 18466-18470.	7.2	67
79	Tailored Electron Transfer Pathways in Au _{core} /Pt _{shell} –Graphene Nanocatalysts for Fuel Cells. Advanced Energy Materials, 2018, 8, 1702609.	10.2	66
80	Nanoporous Cu@Cu ₂ O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. Journal of Materials Chemistry A, 2019, 7, 15691-15697.	5.2	66
81	Dynamic co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis. Nature Communications, 2020, 11, 1919.	5.8	65
82	Sonochemical synthesis of nanocrystalline lead chalcogenides: PbE (E = S, Se, Te). Materials Research Bulletin, 2003, 38, 539-543.	2.7	64
83	Flexible Lithium–Air Battery in Ambient Air with an Inâ€Situ Formed Gel Electrolyte. Angewandte Chemie, 2018, 130, 16363-16367.	1.6	63
84	Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream. Scientific Reports, 2013, 3, 3015.	1.6	61
85	2D ultrathin core–shell Pd@Pt _{monolayer} nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance. Nanoscale, 2015, 7, 11934-11939.	2.8	59
86	Au-Ag alloy nanoporous nanotubes. Nano Research, 2009, 2, 386-393.	5.8	58
87	Synthesis of Sulfonic Acid-Containing Polybenzoxazine for Proton Exchange Membrane in Direct Methanol Fuel Cells. Macromolecules, 2014, 47, 1039-1045.	2.2	58
88	Gasâ€Phase Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Molecular Oxygen over Unsupported Nanoporous Gold. ChemCatChem, 2010, 2, 383-386.	1.8	56
89	Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Talanta, 2010, 80, 1737-1743.	2.9	56
90	Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers. Journal of Catalysis, 2018, 364, 125-130.	3.1	56

#	Article	IF	CITATIONS
91	Preparation and Characterization of Magnesium Hydroxide Sulfate Hydrate Whiskers. Chemistry of Materials, 2000, 12, 2845-2852.	3.2	55
92	Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Research, 2014, 7, 1569-1580.	5.8	54
93	Tuning Surface Structure of 3D Nanoporous Gold by Surfactantâ€Free Electrochemical Potential Cycling. Advanced Materials, 2017, 29, 1703601.	11.1	54
94	Theoretical Study of the CO Oxidation Mediated by Au ₃ ⁺ , Au ₃ , and Au ₃ ^{â^'} : Mechanism and Charge State Effect of Gold on Its Catalytic Activity. Journal of Physical Chemistry C, 2009, 113, 18032-18039.	1.5	53
95	DFT Study on CO Oxidation Catalyzed by Pt _{<i>m</i>} Au _{<i>n</i>} (<i>m</i> +) Tj ETQq1 Catalysts. Journal of Physical Chemistry C, 2010, 114, 14076-14082.	1 0.78431 1.5	4 rgBT /O∨ 53
96	NiCu Bimetallic Nanoparticles on Silica Support for Catalytic Hydrolysis of Ammonia Borane: Composition-Dependent Activity and Support Size Effect. ACS Applied Energy Materials, 2019, 2, 5851-5861.	2.5	53
97	Ultramicroporous carbon with extremely narrow pore distribution and very high nitrogen doping for efficient methane mixture gases upgrading. Carbon, 2017, 122, 258-265.	5.4	52
98	Effective Acetylene/Ethylene Separation at Ambient Conditions by a Pigmentâ€Based Covalentâ€Triazine Framework. Macromolecular Rapid Communications, 2018, 39, 1700468.	2.0	52
99	Mesoporous manganese-cobalt oxide spinel catalysts for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2019, 32, 146-154.	3.3	50
100	Dealloyed nanoporous materials for rechargeable lithium batteries. Electrochemical Energy Reviews, 2020, 3, 541-580.	13.1	49
101	Nanoporous Gold Leaf for Amperometric Determination of Nitrite. Electroanalysis, 2011, 23, 381-386.	1.5	48
102	Atomic origins of high electrochemical CO ₂ reduction efficiency on nanoporous gold. Nanoscale, 2018, 10, 8372-8376.	2.8	46
103	Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Materials, 2019, 6, 045025.	2.0	46
104	Fabrication of layered nanocrystallites SnS and Î ² -SnS2 via a mild solution route. Materials Research Bulletin, 2002, 37, 925-932.	2.7	45
105	Enzyme-Nanoporous Gold Biocomposite: Excellent Biocatalyst with Improved Biocatalytic Performance and Stability. PLoS ONE, 2011, 6, e24207.	1.1	45
106	Micro/nano-structured FeS2 for high energy efficiency rechargeable Li-FeS2 battery. Chemical Engineering Journal, 2018, 334, 725-731.	6.6	45
107	An amalgam route to stabilize potassium metal anodes over a wide temperature range. Chemical Communications, 2020, 56, 3512-3515.	2.2	43
108	Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem, 2022, 4, 100069.	10.1	43

#	Article	IF	CITATIONS
109	Preparation of ternary I-IV-VI nanocrystallines via a mild solution route. Materials Research Bulletin, 2001, 36, 2649-2656.	2.7	42
110	Fabrication of light-emitting porous hydromagnesite with rosette-like architecture. Solid State Communications, 2003, 125, 117-120.	0.9	42
111	Structural Evolution upon Delithiation/Lithiation in Prelithiated Foil Anodes: A Case Study of AgLi Alloys with High Li Utilization and Marginal Volume Variation. Advanced Energy Materials, 2021, 11, 2003082.	10.2	42
112	Synthesis and Optical Properties of Three-Dimensional Porous Coreâ^'Shell Nanoarchitectures. Langmuir, 2008, 24, 4426-4429.	1.6	40
113	Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions. Nano Research, 2016, 9, 3781-3794.	5.8	39
114	Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Frontiers in Chemistry, 2020, 8, 513.	1.8	39
115	An Inâ€Situ Dealloying and Oxidation Route to Co ₃ O ₄ Nanosheets and their Ambientâ€Temperature CO Oxidation Activity. ChemCatChem, 2011, 3, 399-407.	1.8	38
116	Porous Nanostructured Metals for Electrocatalysis. Electroanalysis, 2012, 24, 2035-2043.	1.5	38
117	Hierarchically nanoporous nickel-based actuators with giant reversible strain and ultrahigh work density. Journal of Materials Chemistry C, 2016, 4, 45-52.	2.7	38
118	Crystalline Cu-silicide stabilizes the performance of a high capacity Si-based Li-ion battery anode. Journal of Materials Chemistry A, 2016, 4, 19140-19146.	5.2	37
119	One-step synthesis of ultrafine MoNiS and MoCoS monolayers as high-performance catalysts for hydrodesulfurization and hydrodenitrogenation. Applied Catalysis B: Environmental, 2018, 239, 433-440.	10.8	37
120	Xylanase immobilized nanoporous gold as a highly active and stable biocatalyst. Microporous and Mesoporous Materials, 2012, 161, 1-6.	2.2	36
121	Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts. Electrochemistry Communications, 2008, 10, 1494-1497.	2.3	35
122	Microtensile tests of mechanical properties of nanoporous Au thin films. Journal of Materials Science, 2009, 44, 4728-4733.	1.7	35
123	Correlation of the thermal and electrical conductivities of nanoporous gold. Nanotechnology, 2010, 21, 085703.	1.3	34
124	Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge. Biosensors and Bioelectronics, 2013, 41, 848-851.	5.3	34
125	Association of Glutathione Level and Cytotoxicity of Gold Nanoparticles in Lung Cancer Cells. Journal of Physical Chemistry C, 2011, 115, 12797-12802.	1.5	33
126	Nanoporous Metals for Heterogeneous Catalysis: Following the Success of Raney Nickel. Chemistry - A European Journal, 2020, 26, 8845-8856.	1.7	33

#	Article	IF	CITATIONS
127	A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes. Energy Storage Materials, 2021, 39, 403-411.	9.5	33
128	The effect of surface strain on the CO-poisoned surface of Pt electrode for hydrogen adsorption. Journal of Catalysis, 2017, 350, 212-217.	3.1	32
129	Three-dimensional electrode with conductive Cu framework for stable and fast Li-ion storage. Energy Storage Materials, 2018, 11, 83-90.	9.5	32
130	Platinumâ€Đecorated Au Porous Nanotubes as Highly Efficient Catalysts for Formic Acid Electroâ€Oxidation. ChemPhysChem, 2010, 11, 841-846.	1.0	30
131	Highly selective oxidation of organosilanes with a reusable nanoporous silver catalyst. Catalysis Communications, 2014, 53, 53-56.	1.6	29
132	Dealloying to porous hybrid manganese oxides microspheres for high performance anodes in lithium ion batteries. Journal of Power Sources, 2015, 274, 862-868.	4.0	29
133	Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. Nature Communications, 2019, 10, 1813.	5.8	29
134	Well-defined nanoporous palladium for electrochemical reductive dechlorination. Physical Chemistry Chemical Physics, 2011, 13, 5565.	1.3	28
135	Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Research, 2015, 8, 1365-1372.	5.8	27
136	Nanoporous Metals for Advanced Energy Technologies. , 2016, , .		27
137	Porous MnO as efficient catalyst towards the decomposition of Li2CO3 in ambient Li-air batteries. Electrochimica Acta, 2018, 280, 308-314.	2.6	27
138	Ultrathin Al foils to fabricate dendrite-free Li–Al anodes. Journal of Materials Chemistry A, 2019, 7, 25415-25422.	5.2	27
139	Growth of single crystal selenium with different morphologies via a solvothermal method. Journal of Crystal Growth, 2002, 241, 489-497.	0.7	26
140	Synthesis and growth of hematite nanodiscs through a facile hydrothermal approach. Journal of Nanoparticle Research, 2010, 12, 877-893.	0.8	26
141	Effect of thermal coarsening on the thermal conductivity of nanoporous gold. Journal of Materials Science, 2012, 47, 5013-5018.	1.7	26
142	The Energy Transfer and Thermal Stability of a Blueâ€Green Color Tunable K ₂ CaP ₂ O ₇ :Ce ³⁺ ,Tb ³⁺ Phosphor. Journal of the American Ceramic Society, 2017, 100, 185-192.	1.9	26
143	Exploration of Nanoporous CuBi Binary Alloy for Potassium Storage. Advanced Functional Materials, 2020, 30, 2003838.	7.8	26
144	Gold nanoparticles trigger apoptosis and necrosis in lung cancer cells with low intracellular glutathione. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	25

#	Article	IF	CITATIONS
145	Selective Gasâ€Phase Oxidation of Alcohols over Nanoporous Silver. ChemCatChem, 2013, 5, 1705-1708.	1.8	25
146	Pretreatment effects on pigment-based textile inkjet printing - colour gamut and crockfastness properties. Coloration Technology, 2019, 135, 77-86.	0.7	25
147	Theoretical Investigation of the Formation of Hydrogen Peroxide from H ₂ and O ₂ over Anionic Gold Clusters Au <i>_n</i> ⁻ (<i>n</i> = 1â^4). Journal of Physical Chemistry C, 2007, 111, 11590-11597.	1.5	24
148	Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Research, 2016, 9, 1831-1843.	5.8	24
149	Temperature-Dependent Li Storage Performance in Nanoporous Cu–Ge–Al Alloy. ACS Applied Materials & Interfaces, 2019, 11, 9073-9082.	4.0	24
150	Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na–Air Batteries. ACS Central Science, 2021, 7, 335-344.	5.3	24
151	Assembling Highly Coordinated Pt Sites on Nanoporous Gold for Efficient Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2018, 10, 39705-39712.	4.0	23
152	Fabrication of an expandable keratin sponge for improved hemostasis in a penetrating trauma. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110367.	2.5	23
153	Fabrication of ulcer-adhesive oral keratin hydrogel for gastric ulcer healing in a rat. International Journal of Energy Production and Management, 2021, 8, rbab008.	1.9	22
154	Deposition of Au[sub x]Ag[sub 1â^'x]/Au[sub y]Ag[sub 1â^'y] Multilayers and Multisegment Nanowires. Journal of the Electrochemical Society, 2003, 150, C523.	1.3	21
155	Modification of the Coordination Environment of Active Sites on MoC for Highâ€Efficiency CH ₄ Production. Advanced Energy Materials, 2021, 11, 2100044.	10.2	21
156	Dealloyed Nanoporous Materials for Rechargeable Post‣ithium Batteries. ChemSusChem, 2020, 13, 3376-3390.	3.6	20
157	A thermodynamically stable quasi-liquid interface for dendrite-free sodium metal anodes. Journal of Materials Chemistry A, 2020, 8, 6822-6827.	5.2	20
158	Gold nanorod-templated synthesis of polymetallic hollow nanostructures with enhanced electrocatalytic performance. Nanoscale, 2014, 6, 11732-11737.	2.8	19
159	Silylation reactions on nanoporous gold via homolytic Si–H activation of silanes. Chemical Science, 2018, 9, 4808-4813.	3.7	19
160	Synergistic effects of nanodiamond modified separators toward highly stable and safe lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 16046-16055.	5.2	19
161	Nanoporous Copper Catalysts for the Fluidized Electrocatalytic Hydrogenation of Furfural to Furfuryl Alcohol. ACS Sustainable Chemistry and Engineering, 2022, 10, 7418-7425.	3.2	19
162	Tuning the electronic structure of nanoporous Ag via alloying effect from Cu to boost the ORR and Zn-air battery performance. Applied Surface Science, 2021, 545, 149042.	3.1	18

#	Article	IF	CITATIONS
163	Manipulated Crystallization and Passivated Defects for Efficient Perovskite Solar Cells via Addition of Ammonium Iodide. ACS Applied Materials & amp; Interfaces, 2021, 13, 34053-34063.	4.0	18
164	Nanoporous palladium catalyzed silicon-based one-pot cross-coupling reaction of aryl iodides with organosilanes. Catalysis Science and Technology, 2014, 4, 1734-1737.	2.1	17
165	Filling and unfilling carbon capsules with transition metal oxide nanoparticles for Li-ion hybrid supercapacitors: towards hundred grade energy density. Science China Materials, 2017, 60, 217-227.	3.5	17
166	Nickel Cobalt Thiospinel Nanoparticles as Hydrodesulfurization Catalysts: Importance of Cation Position, Structural Stability, and Sulfur Vacancy. ACS Applied Materials & Interfaces, 2018, 10, 19673-19681.	4.0	17
167	Highly coordinated Pd overlayers on nanoporous gold for efficient formic acid electro-oxidation. Nano Research, 2021, 14, 3502-3508.	5.8	17
168	Carbon-free nanoporous gold based membrane electrocatalysts for fuel cells. Progress in Natural Science: Materials International, 2020, 30, 775-786.	1.8	16
169	Direct anodic (thio)acetalization of aldehydes with alcohols (thiols) under neutral conditions, and computational insight into the electrochemical formation of the acetals. Green Chemistry, 2019, 21, 4030-4034.	4.6	15
170	A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition. Energy Storage Materials, 2021, 34, 708-715.	9.5	15
171	Applications of Lowâ€Meltingâ€Point Metals in Rechargeable Metal Batteries. Chemistry - A European Journal, 2021, 27, 6407-6421.	1.7	15
172	Rechargeable Na–SO 2 Battery with Ethylenediamine Additive in Etherâ€Based Electrolyte. Advanced Functional Materials, 2020, 30, 2002120.	7.8	15
173	Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Research, 2021, 14, 2681-2688.	5.8	15
174	Designing independent water transport channels to improve water flooding in ultra-thin nanoporous film cathodes for PEMFCs. International Journal of Hydrogen Energy, 2022, 47, 21261-21272.	3.8	15
175	Boosting the performance of Pt electro-catalysts toward formic acid electro-oxidation by depositing sub-monolayer Au clusters. Electrochimica Acta, 2011, 56, 10039-10043.	2.6	14
176	Dealloyed Nanoporous Materials for Rechargeable Post‣ithium Batteries. ChemSusChem, 2020, 13, 3287-3287.	3.6	14
177	The direct trifluoromethylsilylation and cyanosilylation of aldehydes <i>via</i> an electrochemically induced intramolecular pathway. Chemical Communications, 2020, 56, 2435-2438.	2.2	14
178	Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction. Electrochimica Acta, 2018, 274, 9-15.	2.6	13
179	Electrochemical reduction of functionalized carbonyl compounds: enhanced reactivity over tailored nanoporous gold. Nanoscale, 2020, 12, 4314-4319.	2.8	13
180	Bottom-Up Li Deposition by Constructing a Multiporous Lithiophilic Gradient Layer on 3D Cu Foam for Stable Li Metal Anodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 7188-7195.	3.2	13

Yi Ding

#	Article	IF	CITATIONS
181	A displacement dealloying route to dilute nanoporous PtAu alloys for highly active formic acid electro-oxidation. Electrochimica Acta, 2021, 373, 137884.	2.6	12
182	Superstructured magnesium hydroxide sulfate hydrate fibres. Solid State Sciences, 2001, 3, 151-156.	0.8	11
183	The optimization of color-prediction models for colored cotton fiber yarns. Textile Reseach Journal, 2019, 89, 4007-4014.	1.1	10
184	Insight into the Regulatory Function of Human Hair Keratins in Wound Healing Using Proteomics. Advanced Biology, 2020, 4, e1900235.	3.0	10
185	Reversible Low Temperature <scp>Liâ€Storage</scp> in Liquid Metal Based Anodes <i>via</i> a <scp>Coâ€Solvent</scp> Strategy ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2801-2807.	2.6	10
186	Synergetic enhancement of the electronic/ionic conductivity of a Li-ion battery by fabrication of a carbon-coated nanoporous SnOxSb alloy anode. Nanoscale, 2018, 10, 7605-7611.	2.8	9
187	Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities. Dalton Transactions, 2020, 49, 4189-4199.	1.6	9
188	Nanoporous Metals. , 2013, , 779-818.		9
189	Ultrathin nanoporous metal–semiconductor heterojunction photoanodes for visible light hydrogen evolution. Nano Research, 2018, 11, 2046-2057.	5.8	8
190	Bifunctional polymer-of-intrinsic-microporosity membrane for flexible Li/Na–H ₂ O ₂ batteries with hybrid electrolytes. Journal of Materials Chemistry A, 2020, 8, 3491-3498.	5.2	8
191	Immobilizing Ceramic Electrolyte Particles into a Gel Matrix Formed In Situ for Stable Li-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38179-38187.	4.0	8
192	Determination of Ligament Size Distribution of Nanoporous Gold by Scanning Electron Microscopy and Image Analysis. Journal of Nanoscience and Nanotechnology, 2009, 9, 1651-1654.	0.9	7
193	Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities. Angewandte Chemie, 2019, 131, 18637-18641.	1.6	7
194	Atomic-scale selectivity of hydrogen for storage sites in Pd nanoparticles at atmospheric pressure. Nanoscale, 2019, 11, 10198-10202.	2.8	7
195	A Strategy To Prepare High-Quality Monocrystalline Graphene: Inducing Graphene Growth with Seeding Chemical Vapor Deposition and Its Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 1306-1314.	4.0	7
196	A study on the applicability of pigment digital printing on cotton fabrics. Textile Reseach Journal, 0, , 004051752199792.	1.1	6
197	Solvothermal deposition of vaterite thin film on glass substrate. Thin Solid Films, 2002, 414, 180-183.	0.8	5

#	Article	IF	CITATIONS
199	X-ray imaging of atomic nuclei. Science China Materials, 2020, 63, 1788-1796.	3.5	5
200	Anodically Triggered Aldehyde Cation Autocatalysis for Alkylation of Heteroarenes. ChemSusChem, 2020, 13, 1997-2001.	3.6	5
201	Effects of Buffers and pH on the Reaction of a <i>trans</i> â€Platinum Complex with 5′â€Guanosine Monophosphate. European Journal of Inorganic Chemistry, 2015, 2015, 4914-4920.	1.0	4
202	Formation and Microstructural Regulation of Nanoporous Metals. , 2016, , 37-81.		4
203	Nanoporous Metals for Fuel Cell Applications. , 2016, , 83-135.		4
204	Accelerated Hydrogen "Spillâ€Over―Enhances Anode Performance of Tensile Strained Pdâ€Based Fuel Cell Electrocatalysts. Small Methods, 2022, 6, e2101328.	4.6	4
205	Dealloyed Nanoporous Metals for Catalysis. , 2016, , .		3
206	Study on the factors influencing the dyeing performance of cotton fabric with vat dyes based on principal component analysis. Journal of the Textile Institute, 2021, 112, 1460-1466.	1.0	3
207	Keratin-A6ACA NPs for gastric ulcer diagnosis and repair. Journal of Materials Science: Materials in Medicine, 2021, 32, 66.	1.7	3
208	Wide-temperature rechargeable Li metal batteries enabled by an in-situ fabricated composite gel electrolyte with a hierarchical structure. Fundamental Research, 2022, 2, 611-618.	1.6	3
209	Introduction to Nanoporous Metals. , 2016, , 1-35.		2
210	Nanoporous Metals for Li Battery Applications. , 2016, , 175-209.		2
211	Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1366-1378.	2.2	2
212	A Grid Inductance Detection Method Based on the Oscillation Characteristic of Inverter Terminal Voltage. IEEE Transactions on Power Electronics, 2022, 37, 7209-7217.	5.4	2
213	Flexible Electronics: Subâ€Micrometerâ€Thick Allâ€Solidâ€State Supercapacitors with High Power and Energy Densities (Adv. Mater. 35/2011). Advanced Materials, 2011, 23, 4000-4000.	11.1	1
214	Frontispiece: Nanoporous Metals for Heterogeneous Catalysis: Following the Success of Raney Nickel. Chemistry - A European Journal, 2020, 26, .	1.7	1
215	Study on the threshold range of polyester ratio for polyester/viscose blended fabrics based on cognitive psychology. Journal of the Textile Institute, 2021, 112, 1120-1128.	1.0	0
216	A Comparative Study of Camouflage Printing Color Matching Based on Monitor and Paper Card. Fibers and Polymers, 2021, 22, 1009-1015.	1.1	0

#	Article	IF	CITATIONS
217	Frontispiece: Applications of Lowâ€Meltingâ€Point Metals in Rechargeable Metal Batteries. Chemistry - A European Journal, 2021, 27, .	1.7	0
218	Gold Leaf Based Electrocatalysts. RSC Energy and Environment Series, 2012, , 129-157.	0.2	0