Patrizia Camelliti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3040125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 2005, 65, 40-51.	3.8	782
2	Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 2004, 94, 828-835.	4.5	317
3	Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14852-14857.	7.1	217
4	Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 2005, 38, 45-50.	0.9	206
5	Axial Stretch of Rat Single Ventricular Cardiomyocytes Causes an Acute and Transient Increase in Ca ²⁺ Spark Rate. Circulation Research, 2009, 104, 787-795.	4.5	199
6	Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. Journal of Physiology, 2004, 559, 835-848.	2.9	174
7	Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Heart Rhythm, 2009, 6, 1641-1649.	0.7	163
8	Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovascular Research, 2004, 62, 415-425.	3.8	157
9	The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials, 2013, 34, 2399-2411.	11.4	154
10	Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovascular Research, 2015, 105, 260-270.	3.8	123
11	Pip5 Transduction Peptides Direct High Efficiency Oligonucleotide-mediated Dystrophin Exon Skipping in Heart and Phenotypic Correction in mdx Mice. Molecular Therapy, 2011, 19, 1295-1303.	8.2	120
12	Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials. Scientific Reports, 2016, 6, 28798.	3.3	98
13	Structural and Functional Coupling of Cardiac Myocytes and Fibroblasts. , 2006, 42, 132-149.		86
14	Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium. Nature Protocols, 2006, 1, 1379-1391.	12.0	77
15	Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies. Journal of Molecular and Cellular Cardiology, 2011, 51, 390-398.	1.9	72
16	Microstructured Cocultures of Cardiac Myocytes and Fibroblasts: A Two-Dimensional <i>In Vitro</i> Model of Cardiac Tissue. Microscopy and Microanalysis, 2005, 11, 249-259.	0.4	71
17	Cardiosphere-Derived Cells Improve Function in the Infarcted Rat Heart for at Least 16 Weeks – an MRI Study. PLoS ONE, 2011, 6, e25669.	2.5	70
18	Measurement and analysis of sarcomere length in rat cardiomyocytes in situ and in vitro. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1616-H1625.	3.2	69

PATRIZIA CAMELLITI

#	Article	IF	CITATIONS
19	Tissue Slices from Adult Mammalian Hearts as a Model for Pharmacological Drug Testing. Cellular Physiology and Biochemistry, 2009, 24, 527-536.	1.6	68
20	Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor. Cell Death and Disease, 2018, 9, 613.	6.3	65
21	Fibroblast–myocyte connections in the heart. Heart Rhythm, 2012, 9, 461-464.	0.7	61
22	In vivo MRI Characterization of Progressive Cardiac Dysfunction in the mdx Mouse Model of Muscular Dystrophy. PLoS ONE, 2012, 7, e28569.	2.5	61
23	Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets?. International Journal of Molecular Sciences, 2018, 19, 866.	4.1	53
24	Role of the 293b-sensitive, slowly activating delayed rectifier potassium current, iKs, in pacemaker activity of rabbit isolated sino-atrial node cells. Cardiovascular Research, 2002, 53, 68-79.	3.8	42
25	Cardiac myocyte–nonmyocyte electrotonic coupling: Implications for ventricular arrhythmogenesis. Heart Rhythm, 2007, 4, 233-235.	0.7	41
26	Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications. Biofabrication, 2014, 6, 025004.	7.1	36
27	Ten–Second Electrophysiology: Evaluation of the 3DEP Platform for high-speed, high-accuracy cell analysis. Scientific Reports, 2019, 9, 19153.	3.3	34
28	Myocardial tissue slices: organotypic pseudo-2D models for cardiac research & development. Future Cardiology, 2009, 5, 425-430.	1.2	32
29	Transverse cardiac slicing and optical imaging for analysis of transmural gradients in membrane potential and Ca ²⁺ transients in murine heart. Journal of Physiology, 2018, 596, 3951-3965.	2.9	31
30	Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling. Journal of Molecular and Cellular Cardiology, 2016, 94, 54-64.	1.9	22
31	<i>In vitro</i> evaluation of novel antisense oligonucleotides is predictive of <i>in vivo</i> exon skipping activity for Duchenne muscular dystrophy. Journal of Gene Medicine, 2010, 12, 354-364.	2.8	19
32	Emerging Bioelectronic Strategies for Cardiovascular Tissue Engineering and Implantation. Small, 2022, 18, e2105281.	10.0	18
33	Spatial regulation of intracellular pH in multicellular strands of neonatal rat cardiomyocytes. Cardiovascular Research, 2010, 85, 729-738.	3.8	11
34	A Protocol for Transverse Cardiac Slicing and Optical Mapping in Murine Heart. Frontiers in Physiology, 2019, 10, 755.	2.8	11
35	Myocardial Viability Imaging using Manganeseâ€Enhanced MRI in the First Hours after Myocardial Infarction. Advanced Science, 2021, 8, e2003987.	11.2	8
36	Epicardial slices: an innovative 3D organotypic model to study epicardial cell physiology and activation. Npj Regenerative Medicine, 2022, 7, 7.	5.2	7

PATRIZIA CAMELLITI

#	Article	IF	CITATIONS
37	Identification of the NADPH Oxidase (Nox) Subtype and the Source of Superoxide Production in the Micturition Centre. Biology, 2022, 11, 183.	2.8	3
38	Structured Culture Scaffolds Improve the Calcium Handling Properties of Cardiomyocytes Differentiated from Induced Pluripotent Stem Cells. Biophysical Journal, 2012, 102, 103a.	0.5	2
39	DEP-Dots for 3D cell culture: low-cost, high-repeatability, effective 3D cell culture in multiple gel systems. Scientific Reports, 2020, 10, 14603.	3.3	2
40	Porcine Organotypic Epicardial Slice Protocol: A Tool for the Study of Epicardium in Cardiovascular Research. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	2
41	17â€Cardiomyocytes Influence Fibroblast Proliferation and α-Smooth Muscle Actin Expression via the Secretion of Paracrine Mediators. Heart, 2014, 100, A6.3-A7.	2.9	1
42	Interrelation of Cardiac Fibroblasts and Myocytes: New Tools and Insights. Microscopy and Microanalysis, 2004, 10, 1398-1399.	0.4	0
43	Stretch-induced Cx43 remodelling in a 2D in vitro model of myocardium. Heart Rhythm, 2005, 2, S107.	0.7	0
44	Human Heart Slices - a Novel Multicellular System Suitable for Electrophysiological and Pharmacological Studies. Biophysical Journal, 2011, 100, 575a.	0.5	0
45	MAPPING REGIONAL REPOLARISATION GRADIENTS IN THE FAILING HUMAN VENTRICLE USING CARDIAC SLICES. Heart, 2014, 100, A20.1-A20.	2.9	0
46	267Direct contact between human cardiac fibroblasts and human induced pluripotent stem cell-derived cardiomyocytes counteracts changes in calcium cycling induced by soluble mediators. Cardiovascular Research, 2014, 103, S48.3-S48.	3.8	0
47	P379Slowed conduction velocity in spontaneously hypertensive rat hearts is due to disease related remodelling. Cardiovascular Research, 2014, 103, S69.4-S69.	3.8	0
48	Electrophysiological and Structural Left Ventricle Remodelling in Spontaneously Hypertensive Rat Hearts: A Multicellular Study. Biophysical Journal, 2014, 106, 122a.	0.5	0
49	Direct Contact Between Human Cardiac Fibroblasts and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Counteracts Changes in Calcium Cycling Induced by Soluble Mediators. Biophysical Journal, 2014, 106, 730a.	0.5	0
50	118â€Development and characterisation of an ex-vivo model of porcine myocardium for preclinical research. , 2018, , .		0
51	The Myocardium in Aortic Stenosis Revisited. JACC: Cardiovascular Imaging, 2020, 13, 2270-2273.	5.3	0