List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/303955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrically driven random lasing from a modified Fabry–Pérot laser diode. Nature Photonics, 2022, 16, 219-225.	31.4	30
2	Colloidal photonic crystals formation studied by real-time light diffraction. Nanophotonics, 2022, 11, 3257-3267.	6.0	4
3	Networks of mutually coupled random lasers. Optica, 2021, 8, 193.	9.3	18
4	Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling. Optics Express, 2021, 29, 16857.	3.4	11
5	Mutually coupled random lasers in complex photonic networks. , 2021, , .		0
6	Emergence of Ringâ€Shaped Microstructures in Restricted Geometries Containing Selfâ€Propelled, Catalytic Janus Spheres. ChemNanoMat, 2021, 7, 1125.	2.8	0
7	Imbibition and dewetting of silica colloidal crystals: An NMR relaxometry study. Journal of Colloid and Interface Science, 2020, 561, 741-748.	9.4	11
8	Siliconâ€Based Photonic Architectures from Hierarchically Porous Carbon Opals. Particle and Particle Systems Characterization, 2020, 37, 1900396.	2.3	2
9	Micropore Filling and Multilayer Formation in Stöber Spheres upon Water Adsorption. Journal of Physical Chemistry C, 2020, 124, 20922-20930.	3.1	8
10	Vacancies in Selfâ€Assembled Crystals: An Archetype for Clusters Statistics at the Nanoscale. Small, 2020, 16, e2002735.	10.0	2
11	Goodbye Juan José Sáenz (1960–2020): A Bright Scientific Mind, an Unusually Prolific Friend, and a Family Man. ACS Photonics, 2020, 7, 1078-1079.	6.6	0
12	Large area metasurfaces made with spherical silicon resonators. Nanophotonics, 2020, 9, 943-951.	6.0	12
13	A Selfâ€Assembled 2D Thermofunctional Material for Radiative Cooling. Small, 2019, 15, e1905290.	10.0	83
14	Templateâ€Free, Surfactantâ€Mediated Orientation of Selfâ€Assembled Supercrystals of Metal–Organic Framework Particles. Small, 2019, 15, e1902520.	10.0	41
15	Spectral Characterization of Transverse Modes in Random Lasers. , 2019, , .		1
16	Tailoring Random Lasing Emission by Pulsed Polymer Ablation. , 2019, , .		0
17	Microporosity Quantification via NMR Relaxometry. Journal of Physical Chemistry C, 2019, 123, 30486-30491.	3.1	12
18	Bare Silica Opals for Realâ€Time Humidity Sensing. Advanced Materials Technologies, 2019, 4, 1800493.	5.8	20

#	Article	IF	CITATIONS
19	Random lasing emission tailored by femtosecond and picosecond pulsed polymer ablation. Optics Letters, 2019, 44, 518.	3.3	23
20	Tunable Visual Detection of Dew by Bare Artificial Opals. Advanced Functional Materials, 2018, 28, 1800591.	14.9	13
21	Hierarchically Porous Carbon Photonic Structures. Advanced Functional Materials, 2018, 28, 1703885.	14.9	15
22	Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nature Chemistry, 2018, 10, 78-84.	13.6	298
23	Direct Measurement of Microporosity and Molecular Accessibility in St¶ber Spheres by Adsorption Isotherms. Journal of Physical Chemistry C, 2018, 122, 22008-22017.	3.1	17
24	Unexpected Optical Blue Shift in Large Colloidal Quantum Dots by Anionic Migration and Exchange. Journal of Physical Chemistry Letters, 2018, 9, 3124-3130.	4.6	6
25	The True Value of Disorder. Advanced Optical Materials, 2018, 6, 1800439.	7.3	20
26	Lasing optical cavities based on macroscopic scattering elements. Scientific Reports, 2017, 7, 40141.	3.3	23
27	Random Lasing at Localization Transition in a Colloidal Suspension (TiO ₂ @Silica). ACS Omega, 2017, 2, 2415-2421.	3.5	31
28	Seeded Synthesis of Monodisperse Core–Shell and Hollow Carbon Spheres. Small, 2016, 12, 4357-4362.	10.0	27
29	Emission regimes of random lasers with spatially localized feedback. Optics Express, 2016, 24, 10912.	3.4	24
30	Large fluctuations at the lasing threshold of solid- and liquid-state dye lasers. Scientific Reports, 2016, 6, 32134.	3.3	33
31	Monodisperse Silica Spheres Ensembles with Tailored Optical Resonances in the Visible. Particle and Particle Systems Characterization, 2016, 33, 871-877.	2.3	12
32	Shape Memory Cellulose-Based Photonic Reflectors. ACS Applied Materials & Interfaces, 2016, 8, 31935-31940.	8.0	68
33	Engineering the Lightâ€Transport Mean Free Path in Silica Photonic Glasses. Particle and Particle Systems Characterization, 2016, 33, 352-357.	2.3	6
34	Colloidal crystals and water: Perspectives on liquid–solid nanoscale phenomena in wet particulate media. Advances in Colloid and Interface Science, 2016, 234, 142-160.	14.7	14
35	Photophysical Analysis of the Formation of Organic–Inorganic Trihalide Perovskite Films: Identification and Characterization of Crystal Nucleation and Growth. Journal of Physical Chemistry C, 2016, 120, 3071-3076.	3.1	23
36	Large area resonant feedback random lasers based on dye-doped biopolymer films. Optics Express, 2015, 23, 29954.	3.4	26

#	Article	IF	CITATIONS
37	Decoupling gain and feedback in coherent random lasers: experiments and simulations. Scientific Reports, 2015, 5, 16848.	3.3	32
38	Random Lasing in Novel Dyeâ€Ðoped White Paints with Shape Memory. Advanced Optical Materials, 2015, 3, 1080-1087.	7.3	12
39	Exploration and Exploitation of Water in Colloidal Crystals. Advanced Materials, 2015, 27, 2686-2714.	21.0	27
40	Tunable emission in dye-doped truxene-based organogels through RET. Journal of Materials Chemistry C, 2015, 3, 5764-5768.	5.5	7
41	3D photonic crystals from highly monodisperse FRET-based red luminescent PMMA spheres. Journal of Materials Chemistry C, 2015, 3, 3999-4006.	5.5	10
42	Protective Ligand Shells for Luminescent SiO ₂ -Coated Alloyed Semiconductor Nanocrystals. ACS Applied Materials & Interfaces, 2015, 7, 6935-6945.	8.0	25
43	Organic Opals: Properties and Applications. , 2015, , 31-55.		1
44	Single and collective mode behaviour in random lasers. , 2014, , .		0
45	Shape-memory effect for self-healing and biodegradable photonic systems. , 2014, , .		0
46	BaMgF ₄ : An Ultraâ€Transparent Twoâ€Dimensional Nonlinear Photonic Crystal with Strong <i>l̈t</i> ⁽³⁾ Response in the UV Spectral Region. Advanced Functional Materials, 2014, 24, 1509-1518.	14.9	36
47	Thermoresponsive Shapeâ€Memory Photonic Nanostructures. Advanced Optical Materials, 2014, 2, 516-521.	7.3	56
48	FRET-Tuned Resonant Random Lasing. Journal of Physical Chemistry C, 2014, 118, 9665-9669.	3.1	29
49	Dynamics of phase-locking random lasers. Physical Review A, 2013, 88, .	2.5	23
50	Non-locality and collective emission in disordered lasing resonators. Light: Science and Applications, 2013, 2, e88-e88.	16.6	29
51	From Bloch to random lasing in ZnO self-assembled nanostructures. Journal of Materials Chemistry C, 2013, 1, 7357.	5.5	8
52	Switching and amplification in disordered lasing resonators. Nature Communications, 2013, 4, 1740.	12.8	33
53	Nanoscale Morphology of Water in Silica Colloidal Crystals. Journal of Physical Chemistry Letters, 2013, 4, 1136-1142.	4.6	21
54	FRETâ€Mediated Amplified Spontaneous Emission in DNA–CTMA Complexes. Advanced Optical Materials, 2013, 1, 651-656.	7.3	15

#	Article	IF	CITATIONS
55	Ultrabroadband generation of multiple concurrent nonlinear coherent interactions in random quadratic media. Applied Physics Letters, 2013, 103, 101101.	3.3	5
56	Active subnanometer spectral control of a random laser. Applied Physics Letters, 2013, 102, .	3.3	64
57	Random lasers driven by engineered pumping. , 2013, , .		0
58	Molding the Flow of Light in Disordered Active Nanostructures. , 2013, , .		0
59	Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal. Optics Express, 2012, 20, 29940.	3.4	26
60	Tunable degree of localization in random lasers with controlled interaction. Applied Physics Letters, 2012, 101, 051104.	3.3	29
61	Light confinement by two-dimensional arrays of dielectric spheres. Physical Review B, 2012, 85, .	3.2	62
62	Random lasing in structures with multi-scale transport properties. Applied Physics Letters, 2012, 101, .	3.3	15
63	Qualitative and Quantitative Analysis of Crystallographic Defects Present in 2D Colloidal Sphere Arrays. Langmuir, 2012, 28, 161-167.	3.5	12
64	Studying Light Propagation in Self-Assembled Hybrid Photonic–Plasmonic Crystals by Fourier Microscopy. Langmuir, 2012, 28, 9174-9179.	3.5	24
65	Water-Dependent Micromechanical and Rheological Properties of Silica Colloidal Crystals Studied by Nanoindentation. Nano Letters, 2012, 12, 4920-4924.	9.1	25
66	Photoinduced Local Heating in Silica Photonic Crystals for Fast and Reversible Switching. Advanced Materials, 2012, 24, 6204-6209.	21.0	10
67	One-Step-Process Composite Colloidal Monolayers and Further Processing Aiming at Porous Membranes. Langmuir, 2012, 28, 13172-13180.	3.5	9
68	In Situ Optical Study of Water Sorption in Silica Colloidal Crystals. Journal of Physical Chemistry C, 2012, 116, 18222-18229.	3.1	18
69	Random laser tailored by directional stimulated emission. Physical Review A, 2012, 85, .	2.5	39
70	Random lasers ensnared. Proceedings of SPIE, 2012, , .	0.8	0
71	Optical Spectroscopy of Real Three-Dimensional Self-Assembled Photonic Crystals. Series in Optics and Optoelectronics, 2012, , 197-212.	0.0	0
72	Photonic Glasses. Series in Optics and Optoelectronics, 2012, , 213-226.	0.0	0

#	Article	IF	CITATIONS
73	Photonic crystals with controlled disorder. Physical Review A, 2011, 84, .	2.5	45
74	Magnetophotonic Response of Three-Dimensional Opals. ACS Nano, 2011, 5, 2957-2963.	14.6	21
75	Three Regimes of Water Adsorption in Annealed Silica Opals and Optical Assessment. Langmuir, 2011, 27, 13992-13995.	3.5	20
76	Optical amplification enhancement in photonic crystals. Physical Review A, 2011, 83, .	2.5	16
77	Strong magnetic response of submicron Silicon particles in the infrared. Optics Express, 2011, 19, 4815.	3.4	626
78	Measurement of transport mean-free path of light in thin systems. Optics Letters, 2011, 36, 2824.	3.3	16
79	Light Emission from Nanocrystalline Si Inverse Opals and Controlled Passivation by Atomic Layer Deposited Al ₂ O ₃ . Advanced Materials, 2011, 23, 5219-5223.	21.0	17
80	The mode-locking transition of random lasers. Nature Photonics, 2011, 5, 615-617.	31.4	195
81	Ultrathin conformal coating for complex magneto-photonic structures. Nanoscale, 2011, 3, 4811.	5.6	12
82	Waterâ€Đependent Photonic Bandgap in Silica Artificial Opals. Small, 2011, 7, 1838-1845.	10.0	33
83	Nanostructuring of Azomolecules in Silica Artificial Opals for Enhanced Photoalignment. Advanced Functional Materials, 2011, 21, 4109-4119.	14.9	11
84	Selfâ€Assembled Photonic Structures. Advanced Materials, 2011, 23, 30-69.	21.0	583
85	Optical anisotropy of synthetic opals. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 82-90.	2.0	3
86	Tunable magneto-photonic response of nickel nanostructures. Applied Physics Letters, 2011, 99, .	3.3	22
87	High Degree of Optical Tunability of Selfâ€Assembled Photonicâ€Plasmonic Crystals by Filling Fraction Modification. Advanced Functional Materials, 2010, 20, 4338-4343.	14.9	45
88	Photonic Glasses: A Step Beyond White Paint. Advanced Materials, 2010, 22, 12-19.	21.0	148
89	Facile route to magnetophotonic crystals by infiltration of 3D inverse opals with magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2010, 322, 1494-1496.	2.3	13
90	New poly(phenylenevinylene)â€methyl methacrylateâ€based photonic crystals. Journal of Polymer Science Part A, 2010, 48, 2659-2665.	2.3	4

#	Article	IF	CITATIONS
91	Enhancement and Directionality of Spontaneous Emission in Hybrid Selfâ€Assembled Photonic–Plasmonic Crystals. Small, 2010, 6, 1757-1761.	10.0	78
92	Strong dispersive effects in the light-scattering mean free path in photonic gaps. Physical Review B, 2009, 79, .	3.2	36
93	Mie resonances to tailor random lasers. Physical Review A, 2009, 80, .	2.5	20
94	Silicon Direct Opals. Advanced Materials, 2009, 21, 2899-2902.	21.0	47
95	Photonic Crystals: Silicon Direct Opals (Adv. Mater. 28/2009). Advanced Materials, 2009, 21, NA-NA.	21.0	0
96	Optical gain in DNA-DCM for lasing in photonic materials. Optics Letters, 2009, 34, 3764.	3.3	36
97	Silicon Photonic Crystals. Optics and Photonics News, 2009, 20, 28.	0.5	2
98	Resonance-driven random lasing. Nature Photonics, 2008, 2, 429-432.	31.4	261
99	A little disorder is just right. Nature Physics, 2008, 4, 755-756.	16.7	9
100	Electrodeposition and optical properties of silver infiltrated photonic nanostructures. Materials Letters, 2008, 62, 2677-2680.	2.6	8
101	Vanadium dioxide thermochromic opals grown by chemical vapour deposition. Journal of Optics, 2008, 10, 125202.	1.5	19
102	Resonant light transport through Mie modes in photonic glasses. Physical Review A, 2008, 78, .	2.5	62
103	Observation of Resonant Behavior in the Energy Velocity of Diffused Light. Physical Review Letters, 2007, 99, 233902.	7.8	73
104	Stacking patterns in self-assembly opal photonic crystals. Applied Physics Letters, 2007, 90, 161131.	3.3	46
105	Optical response of artificial opals oriented along the ΓX direction. Applied Physics Letters, 2007, 90, 231112.	3.3	7
106	Slow to superluminal light waves in thin 3D photonic crystals. Optics Express, 2007, 15, 15342.	3.4	25
107	Photonic Glass: A Novel Random Material for Light. Advanced Materials, 2007, 19, 2597-2602.	21.0	230
108	Silicon onion-layer periodic three dimensional nanostructures. Journal of Materials Chemistry, 2006, 16, 2969-2971.	6.7	7

#	Article	IF	CITATIONS
109	Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry. Physical Review B, 2006, 73, .	3.2	55
110	Silicon Onion‣ayer Nanostructures Arranged in Three Dimensions. Advanced Materials, 2006, 18, 1593-1597.	21.0	25
111	Quantum Dot Thin Layers Templated on ZnO Inverse Opals. Advanced Materials, 2006, 18, 2768-2772.	21.0	28
112	Three-dimensional photonic bandgap materials: semiconductors for light. Journal of Optics, 2006, 8, R1-R14.	1.5	51
113	Opals for Photonic Band-Gap Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1143-1150.	2.9	3
114	Optical study of ΓL high energy photonic pseudogaps in ZnO inverted opals. Journal of Applied Physics, 2006, 99, 046103.	2.5	9
115	Modification of the Natural Photonic Bandgap of Synthetic Opals via Infilling with Crystalline InP. Advanced Functional Materials, 2005, 15, 411-417.	14.9	18
116	ZnO Inverse Opals by Chemical Vapor Deposition. Advanced Materials, 2005, 17, 2761-2765.	21.0	94
117	Photonic band gap properties of GaP opals with a new topology. Applied Physics B: Lasers and Optics, 2005, 81, 205-208.	2.2	3
118	Small Colorful Ribbons for Nanoscience. Small, 2005, 1, 378-380.	10.0	10
119	Tuning and optical study of the ΓX and ΓL photonic pseudogaps in opals. Applied Physics Letters, 2005, 87, 201109.	3.3	19
120			
	Optical and morphological study of disorder in opals. Journal of Applied Physics, 2005, 97, 063502.	2.5	53
121	Optical and morphological study of disorder in opals. Journal of Applied Physics, 2005, 97, 063502. Optical diffraction and high-energy features in three-dimensional photonic crystals. Physical Review B, 2005, 71, .	2.5 3.2	53 96
121 122	Optical diffraction and high-energy features in three-dimensional photonic crystals. Physical Review		
	Optical diffraction and high-energy features in three-dimensional photonic crystals. Physical Review B, 2005, 71, .	3.2	96
122	Optical diffraction and high-energy features in three-dimensional photonic crystals. Physical Review B, 2005, 71, . Self-assembly approach to optical metamaterials. Journal of Optics, 2005, 7, S244-S254.	3.2 1.5	96 56
122 123	Optical diffraction and high-energy features in three-dimensional photonic crystals. Physical Review B, 2005, 71, . Self-assembly approach to optical metamaterials. Journal of Optics, 2005, 7, S244-S254. High-energy optical response of artificial opals. Physical Review B, 2004, 70, .	3.2 1.5 3.2	96 56 73

#	Article	IF	CITATIONS
127	Photonic slab heterostructures based on opals. , 2004, 5450, 1.		1
128	Growth of amorphous Si/Ge multilayer shells in opals. , 2004, 5450, 23.		0
129	In-depth study of the pseudogap in artificial opals. , 2004, , .		1
130	Optical and morphological study of compound polymer opals. , 2004, , .		0
131	Materials Aspects of Photonic Crystals. Advanced Materials, 2003, 15, 1679-1704.	21.0	876
132	Photonic Band Engineering in Opals by Growth of Si/Ge Multilayer Shells. Advanced Materials, 2003, 15, 788-792.	21.0	72
133	High-Energy Photonic Bandgap in Sb2S3 Inverse Opals by Sulfidation Processing. Advanced Materials, 2003, 15, 319-323.	21.0	58
134	Photonic crystal microprisms obtained by carving artificial opals. Journal of Applied Physics, 2003, 93, 671-674.	2.5	13
135	Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals. Applied Physics Letters, 2003, 82, 4068-4070.	3.3	67
136	Synthetic Opals Based on Silica-Coated Gold Nanoparticles. Langmuir, 2002, 18, 4519-4522.	3.5	87
137	Refractive Index Properties of Calcined Silica Submicrometer Spheres. Langmuir, 2002, 18, 1942-1944.	3.5	96
138	Optical study of the full photonic band gap in silicon inverse opals. Applied Physics Letters, 2002, 81, 4925-4927.	3.3	49
139	Nanorobotic Manipulation of Microspheres for On-Chip Diamond Architectures. Advanced Materials, 2002, 14, 1144.	21.0	170
140	Antimony Trisulfide Inverted Opals: Growth, Characterization, and Photonic Properties. Advanced Materials, 2002, 14, 1486-1490.	21.0	38
141	Synthesis of inverse opals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 281-290.	4.7	100
142	Opal-like photonic crystal with diamond lattice. Applied Physics Letters, 2001, 79, 2309-2311.	3.3	59
143	Synthesis and Photonic Bandgap Characterization of Polymer Inverse Opals. Advanced Materials, 2001, 13, 393-396.	21.0	101
144	Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition. Advanced Materials, 2001, 13, 1634-1637.	21.0	131

#	Article	IF	CITATIONS
145	Photonic band gap properties of CdS-in-opal systems. Applied Physics Letters, 2001, 78, 3181-3183.	3.3	40
146	Three-Dimensional Arrays Formed by Monodisperse TiO2 Coated on SiO2 Spheres. Journal of Colloid and Interface Science, 2000, 229, 6-11.	9.4	51
147	Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405, 437-440.	27.8	1,512
148	Germanium FCC Structure from a Colloidal Crystal Template. Langmuir, 2000, 16, 4405-4408.	3.5	87
149	Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal. Physical Review B, 1999, 59, 12169-12172.	3.2	118
150	Photonic crystals for laser action. Optical Materials, 1999, 13, 187-192.	3.6	29
151	Electrophoretic Deposition To Control Artificial Opal Growth. Langmuir, 1999, 15, 4701-4704.	3.5	270
152	Bragg diffraction from indium phosphide infilled fcc silica colloidal crystals. Physical Review B, 1999, 59, 1563-1566.	3.2	93
153	Face centered cubic photonic bandgap materials based on opal-semiconductor composites. Journal of Lightwave Technology, 1999, 17, 1975-1981.	4.6	24
154	Two-dimensional elastic bandgap crystal to attenuate surface waves. Journal of Lightwave Technology, 1999, 17, 2196-2201.	4.6	14
155	Atmospheric pressure MOCVD growth of crystalline InP in opals. Journal of Crystal Growth, 1998, 193, 9-15.	1.5	19
156	Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO2 Spheres by Sintering. Advanced Materials, 1998, 10, 480-483.	21.0	309
157	CdS photoluminescence inhibition by a photonic structure. Applied Physics Letters, 1998, 73, 1781-1783.	3.3	150
158	Photonic crystal properties of packed submicrometric SiO2 spheres. Applied Physics Letters, 1997, 71, 1148-1150.	3.3	334
159	Optical studies of highly strained InGaAs/GaAs quantum wells grown on vicinal surfaces. Journal of Applied Physics, 1997, 81, 3281-3289.	2.5	21
160	Evidence of FCC Crystallization of SiO2Nanospheres. Langmuir, 1997, 13, 6009-6011.	3.5	293
161	3D Long-range ordering in ein SiO2submicrometer-sphere sintered superstructure. Advanced Materials, 1997, 9, 257-260.	21.0	350
162	Photonic crystal made by close packing SiO2submicron spheres. Superlattices and Microstructures, 1997, 22, 399-404.	3.1	73

#	Article	IF	CITATIONS
163	Synthesis and optical properties of CdS and Ge clusters in zeolite cages. Solid-State Electronics, 1996, 40, 641-645.	1.4	17
164	Lowâ€ŧemperature synthesis of Ge nanocrystals in zeolite Y. Applied Physics Letters, 1996, 69, 2347-2349.	3.3	29
165	Edward-Wilkinson Behavior of Crystal Surfaces Grown By Sedimentation of SiO2Nanospheres. Physical Review Letters, 1996, 77, 4572-4575.	7.8	62
166	Electronic localisation and stress inhomogeneity: from quantum wells to coupled quantuw wires and dots. Materials Science and Technology, 1995, 11, 835-839.	1.6	0
167	Origin of the Blue Shift Observed in Highly Strained (Ga, In)As Quantum Wells Grown on GaAs(001) Vicinal Surfaces. Japanese Journal of Applied Physics, 1995, 34, 3437-3441.	1.5	15
168	Terrace length commensurability and surface reconstruction in highly strained InGaAs/GaAs quantum wells grown on vicinal substrates. Superlattices and Microstructures, 1994, 15, 155.	3.1	5
169	High magnetic field studies of the crossed-gap superlattice system InAs/GaSb. Physica B: Condensed Matter, 1993, 184, 268-276.	2.7	20
170	Piezoelectric effects in superlattices. Semiconductor Science and Technology, 1993, 8, S367-S372.	2.0	15
171	Enhanced carrier densities and device performance in piezoelectric pseudomorphic highâ€electron mobility transistor structures. Applied Physics Letters, 1992, 61, 1072-1074.	3.3	27
172	Interface studies of InAs/GaSb superlattices by Raman scattering. Surface Science, 1992, 267, 176-180.	1.9	26
173	Double Raman resonances induced by a magnetic field in GaAs-AlAs multiple quantum wells. Physical Review B, 1991, 44, 1113-1117.	3.2	19
174	Study of electric field effects on the electronic structure of quantum wells by resonant Raman scattering. Surface Science, 1988, 196, 578-583.	1.9	2
175	Natural birefringence in alkali halide single crystals. Physical Review B, 1986, 33, 4283-4288.	3.2	11
176	Modes structure and interaction in random lasers. , 0, , 54-79.		0

Modes structure and interaction in random lasers. , 0, , 54-79. 176