José Antonio SÃ;nchez Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/303893/publications.pdf

Version: 2024-02-01

178 papers

11,250 citations

53 h-index 95 g-index

182 all docs

182 docs citations

182 times ranked

9375 citing authors

#	Article	IF	CITATIONS
1	A new solar photo-Fenton strategy for wastewater reclamation based on simultaneous supply of H2O2 and NaOCl. Science of the Total Environment, 2022, 834, 155273.	3.9	5
2	Mechanistic modelling of wastewater disinfection by the photo-Fenton process at circumneutral pH. Chemical Engineering Journal, 2021, 403, 126335.	6.6	23
3	Treatment of laundry wastewater by solar photo-Fenton process at pilot plant scale. Environmental Science and Pollution Research, 2021, 28, 8576-8584.	2.7	12
4	Perspectives of the solar photo-Fenton process against the spreading of pathogens, antibiotic-resistant bacteria and genes in the environment. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100416.	3.2	13
5	Computational fluid dynamics (CFD) modeling of removal of contaminants of emerging concern in solar photo-Fenton raceway pond reactors. Chemical Engineering Journal, 2021, 413, 127392.	6.6	8
6	Two strategies of solar photo-Fenton at neutral pH for the simultaneous disinfection and removal of contaminants of emerging concern. Comparative assessment in raceway pond reactors. Catalysis Today, 2021, 361, 17-23.	2,2	27
7	Simultaneous Disinfection and Organic Microcontaminant Removal by UVC-LED-Driven Advanced Oxidation Processes. Water (Switzerland), 2021, 13, 1507.	1.2	4
8	Removal of pharmaceuticals in hospital wastewater by solar photo-Fenton with Fe3+-EDDS using a pilot raceway pond reactor: Transformation products and in silico toxicity assessment. Microchemical Journal, 2021, 164, 106014.	2.3	16
9	Assessment of different iron sources for continuous flow solar photo-Fenton at neutral pH for sulfamethoxazole removal in actual MWWTP effluents. Journal of Water Process Engineering, 2021, 42, 102109.	2.6	13
10	Worldwide Research Trends on Solar-Driven Water Disinfection. International Journal of Environmental Research and Public Health, 2021, 18, 9396.	1.2	6
11	Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. Water Research, 2021, 203, 117532.	5.3	5
12	Contribution of temperature and photon absorption on solar photo-Fenton mediated by Fe3+-NTA for CEC removal in municipal wastewater. Applied Catalysis B: Environmental, 2021, 294, 120251.	10.8	24
13	Simultaneous bacterial inactivation and microcontaminant removal by solar photo-Fenton mediated by Fe3+-NTA in WWTP secondary effluents. Water Research, 2021, 205, 117686.	5. 3	16
14	Application of solar photo-Fenton in raceway pond reactors: A review. Science of the Total Environment, 2021, 800, 149653.	3.9	24
15	Enhanced activated persulfate oxidation of ciprofloxacin using a low-grade titanium ore under sunlight: influence of the irradiation source on its transformation products. Environmental Science and Pollution Research, 2021, 28, 24008-24022.	2.7	3
16	Unfolding the action mode of light and homogeneous vs. heterogeneous photo-Fenton in bacteria disinfection and concurrent elimination of micropollutants in urban wastewater, mediated by iron oxides in Raceway Pond Reactors. Applied Catalysis B: Environmental, 2020, 263, 118158.	10.8	28
17	Synthetic fresh-cut wastewater disinfection and decontamination by ozonation at pilot scale. Water Research, 2020, 170, 115304.	5.3	27
18	Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Science of the Total Environment, 2020, 710, 136312.	3.9	167

#	Article	IF	Citations
19	New trend on open solar photoreactors to treat micropollutants by photo-Fenton at circumneutral pH: Increasing optical pathway. Chemical Engineering Journal, 2020, 385, 123982.	6.6	49
20	Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. International Journal of Environmental Research and Public Health, 2020, 17, 170.	1.2	244
21	Fresh-cut wastewater reclamation: Techno-Economical assessment of solar driven processes at pilot plant scale. Applied Catalysis B: Environmental, 2020, 278, 119334.	10.8	18
22	Micropollutant degradation by the heterogeneous solar photo-Fenton process at circumneutral PH using copper slag. Journal of Water Process Engineering, 2020, 38, 101562.	2.6	13
23	Removal and Degradation of Pharmaceutically Active Compounds (PhACs) in Wastewaters by Solar Advanced Oxidation Processes. Handbook of Environmental Chemistry, 2020, , 299-326.	0.2	2
24	Neutral or acidic pH for the removal of contaminants of emerging concern in wastewater by solar photo-Fenton? A techno-economic assessment of continuous raceway pond reactors. Science of the Total Environment, 2020, 736, 139681.	3.9	40
25	Removal of contaminants of emerging concern by continuous flow solar photo-Fenton process at neutral pH in open reactors. Journal of Environmental Management, 2020, 261, 110265.	3.8	33
26	Modeling persulfate activation by iron and heat for the removal of contaminants of emerging concern using carbamazepine as model pollutant. Chemical Engineering Journal, 2020, 389, 124445.	6.6	11
27	Determination of dextromethorphan and dextrorphan solar photo-transformation products by LC/Q-TOF-MS: Laboratory scale experiments and real water samples analysis. Environmental Pollution, 2020, 265, 114722.	3.7	8
28	Fe3+-NTA as iron source for solar photo-Fenton at neutral pH in raceway pond reactors. Science of the Total Environment, 2020, 736, 139617.	3.9	44
29	Comparison of different detoxification pilot plants for the treatment of industrial wastewater by solar photo-Fenton: Are raceway pond reactors a feasible option?. Science of the Total Environment, 2019, 648, 601-608.	3.9	25
30	Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Science of the Total Environment, 2019, 694, 133572.	3.9	91
31	Effect of liquid depth on microcontaminant removal by solar photo-Fenton with Fe(III):EDDS at neutral pH in high salinity wastewater. Environmental Science and Pollution Research, 2019, 26, 28071-28079.	2.7	7
32	TiO2 photocatalysis under natural solar radiation for the degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions at pilot plant scale. Water Research, 2019, 166, 115037.	5.3	67
33	Determination of pesticide levels in wastewater from an agro-food industry: Target, suspect and transformation product analysis Chemosphere, 2019, 232, 152-163.	4.2	70
34	Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater. Journal of Hazardous Materials, 2019, 378, 120737.	6. 5	71
35	On the design and operation of solar photo-Fenton open reactors for the removal of contaminants of emerging concern from WWTP effluents at neutral pH. Applied Catalysis B: Environmental, 2019, 256, 117801.	10.8	24
36	Kinetic assessment of antibiotic resistant bacteria inactivation by solar photo-Fenton in batch and continuous flow mode for wastewater reuse. Water Research, 2019, 159, 184-191.	5. 3	28

#	Article	IF	Citations
37	Commercial fertilizer as effective iron chelate (Fe3+-EDDHA) for wastewater disinfection under natural sunlight for reusing in irrigation. Applied Catalysis B: Environmental, 2019, 253, 286-292.	10.8	20
38	Introduction by Guest Editors. Catalysis Today, 2019, 328, 1.	2.2	0
39	Identification of opioids in surface and wastewaters by LC/QTOF-MS using retrospective data analysis. Science of the Total Environment, 2019, 664, 874-884.	3.9	36
40	Assessment of solar raceway pond reactors for removal of contaminants of emerging concern by photo-Fenton at circumneutral pH from very different municipal wastewater effluents. Chemical Engineering Journal, 2019, 366, 141-149.	6.6	77
41	Continuous flow disinfection of WWTP secondary effluents by solar photo-Fenton at neutral pH in raceway pond reactors at pilot plant scale. Applied Catalysis B: Environmental, 2019, 247, 115-123.	10.8	36
42	Mechanistic modeling of solar photo-Fenton process with Fe3+-EDDS at neutral pH. Applied Catalysis B: Environmental, 2018, 233, 234-242.	10.8	55
43	Photochemical degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions under solar radiation. Water Research, 2018, 128, 61-70.	5.3	39
44	Effective solar processes in fresh-cut wastewater disinfection: Inactivation of pathogenic E. coli O157:H7 and Salmonella enteritidis. Catalysis Today, 2018, 313, 79-85.	2.2	23
45	Effect of volumetric rate of photon absorption on the kinetics of micropollutant removal by solar photo-Fenton with Fe3+-EDDS at neutral pH. Chemical Engineering Journal, 2018, 331, 84-92.	6.6	43
46	Wild bacteria inactivation in WWTP secondary effluents by solar photo-fenton at neutral pH in raceway pond reactors. Catalysis Today, 2018, 313, 72-78.	2.2	34
47	Analysis of Environmental Taxes to Finance Wastewater Treatment in Spain: An Opportunity for Regeneration?. Water (Switzerland), 2018, 10, 226.	1.2	10
48	Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. Journal of Hazardous Materials, 2017, 323, 442-451.	6.5	79
49	Ecotoxicity evaluation of a WWTP effluent treated by solar photo-Fenton at neutral pH in a raceway pond reactor. Environmental Science and Pollution Research, 2017, 24, 1093-1104.	2.7	40
50	Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment. Chemical Engineering Journal, 2017, 318, 161-170.	6.6	75
51	Effect of temperature and photon absorption on the kinetics of micropollutant removal by solar photo-Fenton in raceway pond reactors. Chemical Engineering Journal, 2017, 310, 464-472.	6.6	38
52	Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors. Catalysis Today, 2017, 287, 10-14.	2.2	49
53	Does micropollutant removal by solar photoâ€Fenton reduce ecotoxicity in municipal wastewater? A comprehensive study at pilot scale open reactors. Journal of Chemical Technology and Biotechnology, 2017, 92, 2114-2122.	1.6	23
54	Effect of residence time on micropollutant removal in WWTP secondary effluents by continuous solar photo-Fenton process in raceway pond reactors. Chemical Engineering Journal, 2017, 316, 1114-1121.	6.6	52

#	Article	IF	CITATIONS
55	Low cost UVA-LED as a radiation source for the photo-Fenton process: a new approach for micropollutant removal from urban wastewater. Photochemical and Photobiological Sciences, 2017, 16, 72-78.	1.6	22
56	Fast determination of pesticides and other contaminants of emerging concern in treated wastewater using direct injection coupled to highly sensitive ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2017, 1507, 84-94.	1.8	100
57	Pyrimethanil degradation by photo-Fenton process: Influence of iron and irradiance level on treatment cost. Science of the Total Environment, 2017, 605-606, 230-237.	3.9	30
58	Solar disinfection is an augmentable, in situ -generated photo-Fenton reactionâ€"Part 1: A review of the mechanisms and the fundamental aspects of the process. Applied Catalysis B: Environmental, 2016, 199, 199-223.	10.8	253
59	Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Applied Catalysis B: Environmental, 2016, 198, 431-446.	10.8	160
60	Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid. Journal of Chemical Technology and Biotechnology, 2016, 91, 72-81.	1.6	64
61	Is the combination of nanofiltration membranes and AOPs for removing microcontaminants cost effective in real municipal wastewater effluents?. Environmental Science: Water Research and Technology, 2016, 2, 511-520.	1.2	40
62	Wastewater disinfection by neutral pH photo-Fenton: The role of solar radiation intensity. Applied Catalysis B: Environmental, 2016, 181, 1-6.	10.8	38
63	Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH and μM concentrations of H2O2 and Fe2+/3+. Applied Catalysis B: Environmental, 2015, 174-175, 395-402.	10.8	45
64	Removal of microcontaminants from MWTP effluents by combination of membrane technologies and solar photo-Fenton at neutral pH. Catalysis Today, 2015, 252, 78-83.	2.2	30
65	Fate of micropollutants during sewage sludge disintegration by low-frequency ultrasound. Chemical Engineering Journal, 2015, 280, 575-587.	6.6	17
66	Degradation and monitoring of acetamiprid, thiabendazole and their transformation products in an agro-food industry effluent during solar photo-Fenton treatment in a raceway pond reactor. Chemosphere, 2015, 130, 73-81.	4.2	55
67	Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process. Chemical Engineering Journal, 2015, 264, 690-696.	6.6	62
68	Modelling the photo-Fenton oxidation of the pharmaceutical paracetamol in water including the effect of photon absorption (VRPA). Applied Catalysis B: Environmental, 2015, 166-167, 295-301.	10.8	47
69	Supported TiO ₂ solar photocatalysis at semi-pilot scale: degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. Journal of Chemical Technology and Biotechnology, 2015, 90, 149-157.	1.6	75
70	Modelling of the operation of raceway pond reactors for micropollutant removal by solar photo-Fenton as a function of photon absorption. Applied Catalysis B: Environmental, 2015, 178, 210-217.	10.8	56
71	Biological oxygen demand as a tool to predict membrane bioreactor best operating conditions for a photo-Fenton pretreated toxic wastewater. Journal of Chemical Technology and Biotechnology, 2015, 90, 110-119.	1.6	5
72	Application of solar photo-Fenton at circumneutral pH to nanofiltration concentrates for removal of pharmaceuticals in MWTP effluents. Environmental Science and Pollution Research, 2015, 22, 846-855.	2.7	24

#	Article	IF	Citations
73	Controlling <scp>pH</scp> in biological depuration of industrial wastewater to enable micropollutant removal using a further advanced oxidation process. Journal of Chemical Technology and Biotechnology, 2014, 89, 1274-1282.	1.6	7
74	Application of liquid chromatography quadrupole time-of-flight mass spectrometry to the identification of acetamiprid transformation products generated under oxidative processes in different water matrices. Analytical and Bioanalytical Chemistry, 2014, 406, 2549-2558.	1.9	16
75	Fate of thiabendazole through the treatment of a simulated agro-food industrial effluent by combined MBR/Fenton processes at 1 /4g/L scale. Water Research, 2014, 51, 55-63.	5 . 3	50
76	Removal of pharmaceuticals at microg Lâ^'1 by combined nanofiltration and mild solar photo-Fenton. Chemical Engineering Journal, 2014, 239, 68-74.	6.6	47
77	Microcontaminant removal by solar photo-Fenton at natural pH run with sequential and continuous iron additions. Chemical Engineering Journal, 2014, 235, 132-140.	6.6	41
78	Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation). Separation and Purification Technology, 2014, 122, 515-522.	3.9	84
79	Effects of environmental variables on the photo-Fenton plant design. Chemical Engineering Journal, 2014, 237, 469-477.	6.6	24
80	New approach to solar photo-Fenton operation. Raceway ponds as tertiary treatment technology. Journal of Hazardous Materials, 2014, 279, 322-329.	6.5	71
81	Identification and monitoring of thiabendazole transformation products in water during Fenton degradation by LC-QTOF-MS. Analytical and Bioanalytical Chemistry, 2014, 406, 5323-5337.	1.9	43
82	Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Research, 2014, 64, 23-31.	5. 3	131
83	A new bioseed for determination of wastewater biodegradability: analysis of the experimental procedure. Environmental Science and Pollution Research, 2014, 21, 9522-9528.	2.7	О
84	Phenomenological study and application of the combined influence of iron concentration and irradiance on the photo-Fenton process to remove micropollutants. Science of the Total Environment, 2014, 478, 123-132.	3.9	38
85	Solar photo-Fenton for water disinfection: An investigation of the competitive role of model organic matter for oxidative species. Applied Catalysis B: Environmental, 2014, 148-149, 484-489.	10.8	49
86	Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. Water Research, 2014, 63, 316-324.	5. 3	57
87	PROMOTING ENVIRONMENTAL TECHNOLOGY USING SANITARY TAX: THE CASE OF AGRO-FOOD INDUSTRIAL WASTEWATER IN SPAIN. Environmental Engineering and Management Journal, 2014, 13, 961-969.	0.2	5
88	Modelling micropollutant removal by solar photo-Fenton. Global Nest Journal, 2014, 16, 445-454.	0.3	3
89	Study of iron sources and hydrogen peroxide supply in the photoâ€Fenton process using acetaminophen as model contaminant. Journal of Chemical Technology and Biotechnology, 2013, 88, 636-643.	1.6	8
90	Combined nanofiltration and photo-Fenton treatment of water containing micropollutants. Chemical Engineering Journal, 2013, 224, 89-95.	6.6	61

#	Article	IF	Citations
91	Inactivation of Enterococcus faecalis in simulated wastewater treatment plant effluent by solar photo-Fenton at initial neutral pH. Catalysis Today, 2013, 209, 195-200.	2.2	39
92	Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs. Journal of Hazardous Materials, 2013, 244-245, 195-203.	6.5	85
93	Cost analysis of different hydrogen peroxide supply strategies in the solar photo-Fenton process. Chemical Engineering Journal, 2013, 224, 75-81.	6.6	38
94	Iron dosage as a strategy to operate the photo-Fenton process at initial neutral pH. Chemical Engineering Journal, 2013, 224, 67-74.	6.6	40
95	Automatic dosage of hydrogen peroxide in solar photo-Fenton plants: Development of a control strategy for efficiency enhancement. Journal of Hazardous Materials, 2012, 237-238, 223-230.	6.5	24
96	Water disinfection using photo-Fenton: Effect of temperature on Enterococcus faecalis survival. Water Research, 2012, 46, 6154-6162.	5.3	63
97	Gas–liquid Mass Transfer in Sonicated Bubble Columns. Effect of Reactor Diameter and Liquid Height. Industrial & Diameter and Liquid Height. Industrial & Diameter and Liquid Height.	1.8	18
98	Modelling photo-Fenton process for organic matter mineralization, hydrogen peroxide consumption and dissolved oxygen evolution. Applied Catalysis B: Environmental, 2012, 119-120, 132-138.	10.8	33
99	Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 2011, 409, 4141-4166.	3.9	1,946
100	Effect of environmental regulation on the profitability of sustainable water use in the agro-food industry. Desalination, 2011, 279, 252-257.	4.0	28
101	An analysis of the bacterial community in a membrane bioreactor fed with photo-Fenton pre-treated toxic water. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1171-1178.	1.4	9
102	Dissolved oxygen concentration: A key parameter in monitoring the photo-Fenton process. Applied Catalysis B: Environmental, 2011, 104, 316-323.	10.8	53
103	Economic evaluation of the photo-Fenton process. Mineralization level and reaction time: The keys for increasing plant efficiency. Journal of Hazardous Materials, 2011, 186, 1924-1929.	6.5	64
104	Decontamination of industrial wastewater containing pesticides by combining large-scale homogeneous solar photocatalysis and biological treatment. Chemical Engineering Journal, 2010, 160, 447-456.	6.6	77
105	Influence of ultrasound amplitude and duty cycle on fungal morphology and broth rheology of Aspergillus terreus. World Journal of Microbiology and Biotechnology, 2010, 26, 1409-1418.	1.7	11
106	Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: Interdependence of initial pollutant concentration, temperature and iron concentration. Applied Catalysis B: Environmental, 2010, 97, 292-298.	10.8	65
107	Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catalysis Today, 2010, 151, 100-106.	2.2	57
108	Integration of Solar Photocatalysis and Membrane Bioreactor for Pesticides Degradation. Separation Science and Technology, 2010, 45, 1571-1578.	1.3	19

#	Article	IF	CITATIONS
109	A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions. Ecotoxicology and Environmental Safety, 2010, 73, 1189-1195.	2.9	42
110	Confirming Pseudomonas putida as a reliable bioassay for demonstrating biocompatibility enhancement by solar photo-oxidative processes of a biorecalcitrant effluent. Journal of Hazardous Materials, 2009, 162, 1223-1227.	6.5	14
111	Evaluation of operational parameters involved in solar photo-Fenton degradation of a commercial pesticide mixture. Catalysis Today, 2009, 144, 94-99.	2.2	90
112	Solar photo-Fenton treatment of pesticides in water: Effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability. Applied Catalysis B: Environmental, 2009, 88, 448-454.	10.8	107
113	Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation. Water Research, 2009, 43, 653-660.	5.3	133
114	Effect of pesticide concentration on the degradation process by combined solar photo-Fenton and biological treatment. Water Research, 2009, 43, 3838-3848.	5.3	50
115	Effects of ultrasound on culture of <i>Aspergillus terreus</i> . Journal of Chemical Technology and Biotechnology, 2008, 83, 593-600.	1.6	49
116	Lovastatin production by <i>Aspergillus terreus</i> in a twoâ€staged feeding operation. Journal of Chemical Technology and Biotechnology, 2008, 83, 1236-1243.	1.6	21
117	A kinetics study on the biodegradation of synthetic wastewater simulating effluent from an advanced oxidation process using Pseudomonas putida CECT 324. Journal of Hazardous Materials, 2008, 151, 780-788.	6.5	24
118	Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation. Journal of Hazardous Materials, 2008, 155, 342-349.	6.5	73
119	Combined photo-Fenton and biological oxidation for pesticide degradation: Effect of photo-treated intermediates on biodegradation kinetics. Chemosphere, 2008, 70, 1476-1483.	4.2	40
120	Ultrasound affects fungal morphology and broth rheology of Aspergillus terreus. Journal of Biotechnology, 2008, 136, S489-S490.	1.9	4
121	Advanced oxidation process–biological system for wastewater containing a recalcitrant pollutant. Water Science and Technology, 2007, 55, 229-235.	1.2	8
122	Pre-industrial-scale Combined Solar Photo-Fenton and Immobilized Biomass Activated-Sludge Biotreatment. Industrial & Engineering Chemistry Research, 2007, 46, 7467-7475.	1.8	38
123	Enhanced production of lovastatin in a bubble column by Aspergillus terreus using a two-stage feeding strategy. Journal of Chemical Technology and Biotechnology, 2007, 82, 58-64.	1.6	25
124	A combined solar photocatalytic-biological field system for the mineralization of an industrial pollutant at pilot scale. Catalysis Today, 2007, 122, 150-159.	2.2	67
125	Detoxification of wastewater containing five common pesticides by solar AOPs–biological coupled system. Catalysis Today, 2007, 129, 69-78.	2.2	101
126	Simultaneous Determination of Oxygen Consumption Rate and Volumetric Oxygen Transfer Coefficient in Pneumatically Agitated Bioreactors. Industrial & Engineering Chemistry Research, 2006, 45, 1167-1171.	1.8	38

#	Article	IF	CITATIONS
127	Aspergillus terreus Broth Rheology, Oxygen Transfer, and Lovastatin Production in a Gas-Agitated Slurry Reactor. Industrial & Engineering Chemistry Research, 2006, 45, 4837-4843.	1.8	32
128	Shear rate in stirred tank and bubble column bioreactors. Chemical Engineering Journal, 2006, 124, 1-5.	6.6	221
129	Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. Journal of Hazardous Materials, 2006, 138, 507-517.	6.5	170
130	Effects of the sporulation conditions on the lovastatin production by Aspergillus terreus. Bioprocess and Biosystems Engineering, 2006, 29, 1-5.	1.7	22
131	Solar photocatalytic degradation and detoxification of EU priority substances. Catalysis Today, 2005, 101, 203-210.	2.2	135
132	Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochemical Engineering Journal, 2005, 26, 139-144.	1.8	90
133	Photocatalytic treatment of dimethoate by solar photocatalysis at pilot plant scale. Environmental Chemistry Letters, 2005, 3, 118-121.	8.3	25
134	Rapid screening of Aspergillus terreus mutants for overproduction of lovastatin. World Journal of Microbiology and Biotechnology, 2005, 21, 123-125.	1.7	30
135	Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. Journal of Biotechnology, 2005, 116, 61-77.	1.9	147
136	Lovastatin inhibits its own synthesis in Aspergillus terreus. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 48-50.	1.4	26
137	Fermentation optimization for the production of lovastatin by Aspergillus terreus: use of response surface methodology. Journal of Chemical Technology and Biotechnology, 2004, 79, 1119-1126.	1.6	46
138	Production of 13C polyunsaturated fatty acids from the microalga Phaeodactylum tricornutum. Journal of Applied Phycology, 2003, 15, 229-237.	1.5	4
139	Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme and Microbial Technology, 2003, 33, 270-277.	1.6	171
140	Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chemical Engineering Science, 2001, 56, 2721-2732.	1.9	247
141	Modeling of eicosapentaenoic acid (EPA) production fromPhaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance., 2000, 68, 173-183.		56
142	Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chemistry, 2000, 70, 345-353.	4.2	164
143	Nota. Composici \tilde{A}^3 n nutritiva de la biomasa de la microalga Porphyridium cruentum / Note. Nutrient composition of the biomass of the microalga Porphyridium cruentum. Food Science and Technology International, 2000, 6, 129-135.	1.1	2
144	Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture., 1999, 62, 71-86.		262

#	Article	IF	Citations
145	Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. Progress in Industrial Microbiology, 1999, , 271-288.	0.0	5
146	Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. Journal of Biotechnology, 1999, 70, 271-288.	1.9	83
147	Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture., 1999, 62, 71.		1
148	Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture., 1999, 62, 71.		4
149	Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance., 1998, 58, 605-616.		188
150	Photolimitation and photoinhibition as factors determining optimal dilution rate to produce eicosapentaenoic acid from cultures of the microalga Isochrysis galbana. Applied Microbiology and Biotechnology, 1998, 50, 199-205.	1.7	38
151	Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme and Microbial Technology, 1997, 21, 375-381.	1.6	99
152	A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture., 1997, 55, 701-714.		202
153	A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. Journal of Biotechnology, 1996, 45, 59-69.	1.9	164
154	Productivity analysis of outdoor chemostat culture in tubular air-lift photobioreactors. Journal of Applied Phycology, 1996, 8, 369-380.	1.5	49
155	Growth yield determination in a chemostat culture of the marine microalgalsochrysis galbana. Journal of Applied Phycology, 1996, 8, 529-534.	1.5	18
156	Optimization of light and temperature for growing Chlorella sp. using response surface methodology. Biotechnology Letters, 1996, 10, 329.	0.5	7
157	Variation of fatty acid profile with solar cycle in outdoor chemostat culture oflsochrysis galbana ALII-4. Journal of Applied Phycology, 1995, 7, 129-134.	1.5	15
158	Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalgalsochrysis galbana. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 575-583.	0.8	85
159	Long-term preservation of Tetraselmis suecica: influence of storage on viability and fatty acid profile. Aquaculture, 1995, 134, 81-90.	1.7	65
160	Biomass and icosapentaenoic acid productivities from an outdoor batch culture of Phaeodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor. Applied Microbiology and Biotechnology, 1995, 42, 658-663.	1.7	41
161	n-3 Polyunsaturated fatty acid productivity of the marine microalgalsochrysis galbana. Growth conditions and phenotypic selection. Journal of Applied Phycology, 1994, 6, 475-478.	1.5	8
162	Effect of dilution rate on eicosapentaenoic acid productivity of Phaeodactylum tricornutum utex 640 in outdoor chemostat culture. Biotechnology Letters, 1994, 16, 1035-1040.	1.1	27

#	Article	IF	Citations
163	Comparison between extraction of lipids and fatty acids from microalgal biomass. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 955-959.	0.8	134
164	Outdoor turbidostat culture of the marine microalga Tetraselmis sp Aquaculture Research, 1994, 25, 547-555.	0.9	6
165	QUANTITATIVE GENETICS OF FATTY ACID VARIATION IN ISOCHRYSIS GALBANA (PRYMNESIOPHYCEAE) AND PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE) 1. Journal of Phycology, 1994, 30, 553-558.	1.0	23
166	Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. Journal of Biotechnology, 1994, 37, 159-166.	1.9	48
167	Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Applied Microbiology and Biotechnology, 1994, 41, 23-27.	1.7	67
168	Biochemical productivity and fatty acid profiles of Isochrysis galbana Parke and Tetraselmis sp. as a function of incident light intensity. Process Biochemistry, 1994, 29, 119-126.	1.8	23
169	Preservation of the marine microalga, Isochrysis galbana: influence on the fatty acid profile. Aquaculture, 1994, 123, 377-385.	1.7	44
170	A mathematical model of microalgal growth in light-limited chemostat culture. Journal of Chemical Technology and Biotechnology, 1994, 61, 167-173.	1.6	220
171	Estudio de macronutrientes para la producci \tilde{A}^3 n de PUFAs a partir de la microalga marina <i>lsochrysis galbana</i> . Grasas Y Aceites, 1994, 45, 323-331.	0.3	7
172	n-3 PUFA productivity in chemostat cultures of microalgae. Applied Microbiology and Biotechnology, 1993, 38, 599.	1.7	74
173	Gasâ€liquid transfer of atmospheric CO ₂ in microalgal cultures. Journal of Chemical Technology and Biotechnology, 1993, 56, 329-337.	1.6	36
174	Cuantificación de ácidos grasos a partir de biomasa microalgal. Grasas Y Aceites, 1993, 44, 348-353.	0.3	16
175	EPA from Isochrysis galbana. Growth conditions and productivity. Process Biochemistry, 1992, 27, 299-305.	1.8	65
176	Isolation of clones of Isochrysis galbana rich in eicosapentaenoic acid. Aquaculture, 1992, 102, 363-371.	1.7	50
177	Fatty acid variation among different isolates of a single strain of Isochrysis galbana. Phytochemistry, 1992, 31, 3901-3904.	1.4	31
178	Degradation of Thiabendazole and Its Transformation Products by Two Photo-Assisted Iron-Based Processes in a Raceway Pond Reactor. Topics in Catalysis, 0, , .	1.3	1