
Ignacio Arechaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3038273/publications.pdf Version: 2024-02-01

ICNACIO ARECHACA

#	Article	IF	CITATIONS
1	Monitoring Bacterial Conjugation by Optical Microscopy. Frontiers in Microbiology, 2021, 12, 750200.	3.5	7
2	Drug Weaponry to Fight Against SARS-CoV-2. Frontiers in Molecular Biosciences, 2020, 7, 204.	3.5	2
3	Spectrophotometric Assays to Quantify the Activity of T4SS ATPases. Methods in Molecular Biology, 2020, 2075, 135-143.	0.9	Ο
4	The FtsK-like motor TraB is a DNA-dependent ATPase that forms higher-order assemblies. Journal of Biological Chemistry, 2019, 294, 5050-5059.	3.4	7
5	Conjugation inhibitors compete with palmitic acid for binding to the conjugative traffic ATPase TrwD, providing a mechanism to inhibit bacterial conjugation. Journal of Biological Chemistry, 2018, 293, 16923-16930.	3.4	23
6	Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7967-7972.	7.1	65
7	Fludarabine resistance mediated by aminoglycosideâ€3'phosphotransferaseâ€IIa and the structurally related eukaryotic cAMPâ€dependent protein kinase. FASEB Journal, 2017, 31, 3007-3017.	0.5	1
8	Cardiolipin plays an essential role in the formation of intracellular membranes in Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1124-1132.	2.6	26
9	Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. Frontiers in Microbiology, 2017, 8, 2329.	3.5	44
10	Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation. Molecular Microbiology, 2016, 100, 912-921.	2.5	42
11	Towards an integrated model of bacterial conjugation. FEMS Microbiology Reviews, 2014, 39, n/a-n/a.	8.6	195
12	Structural independence of conjugative coupling protein TrwB from its Type IV secretion machinery. Plasmid, 2013, 70, 146-153.	1.4	16
13	Membrane Invaginations in Bacteria and Mitochondria: Common Features and Evolutionary Scenarios. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 13-23.	1.0	40
14	Functional Interactions of VirB11 Traffic ATPases with VirB4 and VirD4 Molecular Motors in Type IV Secretion Systems. Journal of Bacteriology, 2013, 195, 4195-4201.	2.2	53
15	Molecular Motors in Bacterial Secretion. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 357-369.	1.0	13
16	The Hexameric Structure of a Conjugative VirB4 Protein ATPase Provides New Insights for a Functional and Phylogenetic Relationship with DNA Translocases. Journal of Biological Chemistry, 2012, 287, 39925-39932.	3.4	66
17	Regulation of the Type IV Secretion ATPase TrwD by Magnesium. Journal of Biological Chemistry, 2012, 287, 17408-17414.	3.4	18
18	Membrane-associated nanomotors for macromolecular transport. Current Opinion in Biotechnology, 2012, 23, 537-544.	6.6	23

IGNACIO ARECHAGA

#	Article	IF	CITATIONS
19	Increased Sensitivity of Antigen-Experienced T Cells through the Enrichment of Oligomeric T Cell Receptor Complexes. Immunity, 2011, 35, 375-387.	14.3	153
20	Autoinhibitory Regulation of TrwK, an Essential VirB4 ATPase in Type IV Secretion Systems. Journal of Biological Chemistry, 2011, 286, 17376-17382.	3.4	18
21	Detection and Functional Characterization of a 215 Amino Acid N-Terminal Extension in the Xanthomonas Type III Effector XopD. PLoS ONE, 2010, 5, e15773.	2.5	25
22	Structural characterization of the TCR complex by electron microscopy. International Immunology, 2010, 22, 897-903.	4.0	19
23	Electron microscopy analysis of mammalian phosphofructokinase reveals an unusual 3-dimensional structure with significant implications for enzyme function. FASEB Journal, 2010, 24, 4960-4968.	0.5	7
24	Electron microscopy analysis of mammalian phosphofructokinase reveals an unusual 3â€dimensional structure with significant implications for enzyme function. FASEB Journal, 2010, 24, 4960-4968.	0.5	1
25	ATPase Activity and Oligomeric State of TrwK, the VirB4 Homologue of the Plasmid R388 Type IV Secretion System. Journal of Bacteriology, 2008, 190, 5472-5479.	2.2	44
26	The ATPase Activity of the DNA Transporter TrwB Is Modulated by Protein TrwA. Journal of Biological Chemistry, 2007, 282, 25569-25576.	3.4	72
27	Reconstitution of mitochondrial ATP synthase into lipid bilayers for structural analysis. Journal of Structural Biology, 2007, 160, 287-294.	2.8	15
28	Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. Journal of Experimental Medicine, 2005, 202, 493-503.	8.5	288
29	Molecular properties of purified human uncoupling protein 2 refolded from bacterial inclusion bodies. Journal of Bioenergetics and Biomembranes, 2003, 35, 409-418.	2.3	10
30	Over-expression ofEscherichia coliF1Fo-ATPase subunit a is inhibited by instability of theuncBgene transcript. FEBS Letters, 2003, 547, 97-100.	2.8	32
31	The Membrane Domain of the Na+-motive V-ATPase from Enterococcus hirae Contains a Heptameric Rotor. Journal of Biological Chemistry, 2003, 278, 21162-21167.	3.4	27
32	Self-assembly of ATP synthase subunit c rings. FEBS Letters, 2002, 515, 189-193.	2.8	63
33	Modeling the transmembrane arrangement of the uncoupling protein UCP1 and topological considerations of the nucleotide-binding site. Journal of Bioenergetics and Biomembranes, 2002, 34, 473-486.	2.3	14
34	The rotor in the membrane of the ATP synthase and relatives. FEBS Letters, 2001, 494, 1-5.	2.8	31
35	The Mitochondrial Uncoupling Protein UCP1: A Gated Pore. IUBMB Life, 2001, 52, 165-173.	3.4	49
36	Quick guide: ATP synthase. Current Biology, 2001, 11, R117.	3.9	7

Ignacio Arechaga

#	Article	IF	CITATIONS
37	The rotary mechanism of ATP synthase. Current Opinion in Structural Biology, 2000, 10, 672-679.	5.7	302
38	Dimerization of Bovine F1-ATPase by Binding the Inhibitor Protein, IF1. Journal of Biological Chemistry, 2000, 275, 28353-28355.	3.4	97
39	Characterisation of new intracellular membranes in <i>Escherichia coli</i> accompanying large scale overâ€production of the b subunit of F ₁ F _o ATP synthase. FEBS Letters, 2000, 482, 215-219.	2.8	139
40	Activation of the Uncoupling Protein by Fatty Acids is Modulated by Mutations in the C-Terminal Region of the Protein. FEBS Journal, 1996, 239, 445-450.	0.2	54
41	Cysteine residues are not essential for uncoupling protein function. Biochemical Journal, 1993, 296, 693-700.	3.7	93
42	Effect of hydrophobic sulphydryl reagents on the uncoupling protein and inner-membrane anion channel of brown-adipose-tissue mitochondria. FEBS Journal, 1989, 182, 187-193.	0.2	17