Craig P Hersh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3038036/publications.pdf

Version: 2024-02-01

159 papers 9,079 citations

41323 49 h-index 48277 88 g-index

206 all docs

206 docs citations

206 times ranked 9656 citing authors

#	Article	IF	CITATIONS
1	A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci. PLoS Genetics, 2009, 5, e1000421.	1.5	656
2	The clinical features of the overlap between COPD and asthma. Respiratory Research, 2011, 12, 127.	1.4	362
3	Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nature Genetics, 2010, 42, 200-202.	9.4	348
4	<i>MMP12,</i> Lung Function, and COPD in High-Risk Populations. New England Journal of Medicine, 2009, 361, 2599-2608.	13.9	315
5	Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respiratory Medicine,the, 2014, 2, 214-225.	5.2	291
6	The Chronic Bronchitic Phenotype of COPD. Chest, 2011, 140, 626-633.	0.4	280
7	The clinical and genetic features of COPD-asthma overlap syndrome. European Respiratory Journal, 2014, 44, 341-350.	3.1	249
8	A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Human Molecular Genetics, 2012, 21, 947-957.	1.4	216
9	Attempted Replication of Reported Chronic Obstructive Pulmonary Disease Candidate Gene Associations. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 71-78.	1.4	185
10	Quantitative Computed Tomography Measures of Pectoralis Muscle Area and Disease Severity in Chronic Obstructive Pulmonary Disease. A Cross-Sectional Study. Annals of the American Thoracic Society, 2014, 11, 326-334.	1.5	168
11	Clarification of the Risk of Chronic Obstructive Pulmonary Disease in $\hat{l}\pm <$ sub>-Antitrypsin Deficiency PiMZ Heterozygotes. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 419-427.	2.5	156
12	Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Human Molecular Genetics, 2012, 21, 1325-1335.	1.4	143
13	Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2018, 141, 2037-2047.e10.	1.5	138
14	Genetic Determinants of Emphysema Distribution in the National Emphysema Treatment Trial. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 42-48.	2.5	136
15	Cluster analysis in the COPDGene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema. Thorax, 2014, 69, 416-423.	2.7	128
16	A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 559-569.	2.5	128
17	Heritability of Chronic Obstructive Pulmonary Disease and Related Phenotypes in Smokers. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 941-947.	2.5	121
18	A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genetics, 2015, 16, 138.	2.7	119

#	Article	IF	CITATIONS
19	The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Human Molecular Genetics, 2010, 19, 526-534.	1.4	118
20	Distinct Quantitative Computed Tomography Emphysema Patterns Are Associated with Physiology and Function in Smokers. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1083-1090.	2.5	118
21	Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1238-1247.	2.5	117
22	Genetic Association Analysis of Functional Impairment in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 977-984.	2.5	112
23	COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2019, 6, 384-399.	0.5	112
24	Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respiratory Research, 2013, 14, 42.	1.4	93
25	Interobserver Variability in the Determination of Upper Lobe-Predominant Emphysema. Chest, 2007, 131, 424-431.	0.4	88
26	Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD. PLoS Genetics, 2016, 12, e1006011.	1.5	88
27	Polymorphisms in Surfactant Protein–D Are Associated with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 316-322.	1.4	83
28	The value of blood cytokines and chemokines in assessing COPD. Respiratory Research, 2017, 18, 180.	1.4	83
29	Comprehensive Testing of Positionally Cloned Asthma Genes in Two Populations. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 849-857.	2.5	82
30	Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods. BMC Medical Genomics, 2015, 8, 1.	0.7	78
31	$\hat{l}\pm;1$ -Antitrypsin Protease Inhibitor MZ Heterozygosity Is Associated With Airflow Obstruction in Two Large Cohorts. Chest, 2010, 138, 1125-1132.	0.4	77
32	Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Scientific Reports, 2017, 7, 44232.	1.6	76
33	<i>CHRNA3</i> / <i>5</i> , <i>IREB2</i> , and <i>ADCY2</i> Are Associated with Severe Chronic Obstructive Pulmonary Disease in Poland. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 203-208.	1.4	75
34	Predictors of Survival in Severe, Early Onset COPD. Chest, 2004, 126, 1443-1451.	0.4	74
35	DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics, 2016, 11, 730-739.	1.3	73
36	Prediction of Acute Respiratory Disease in Current and Former Smokers With and Without COPD. Chest, 2014, 146, 941-950.	0.4	71

#	Article	IF	Citations
37	SOX5 Is a Candidate Gene for Chronic Obstructive Pulmonary Disease Susceptibility and Is Necessary for Lung Development. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1482-1489.	2.5	67
38	Features of COPD as Predictors of LungÂCancer. Chest, 2018, 153, 1326-1335.	0.4	67
39	It's more than low BMI: prevalence of cachexia and associated mortality in COPD. Respiratory Research, 2019, 20, 100.	1.4	66
40	Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 677-690.	2.5	66
41	The clinical impact of non-obstructive chronic bronchitis in current and former smokers. Respiratory Medicine, 2014, 108, 491-499.	1.3	65
42	Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax, 2017, 72, 998-1006.	2.7	65
43	The association of plasma biomarkers with computed tomography-assessed emphysema phenotypes. Respiratory Research, 2014, 15, 127.	1.4	61
44	Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. Genome Medicine, 2015, 7, 12.	3.6	61
45	Alpha-1 Antitrypsin PiMZ Genotype Is Associated with Chronic Obstructive Pulmonary Disease in Two Racial Groups. Annals of the American Thoracic Society, 2017, 14, 1280-1287.	1.5	60
46	Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease. PLoS ONE, 2011, 6, e24395.	1.1	59
47	Childhood pneumonia increases risk for chronic obstructive pulmonary disease: the COPDGene study. Respiratory Research, 2015, 16, 115.	1.4	59
48	Diffusing Capacity of Carbon Monoxide inÂAssessment of COPD. Chest, 2019, 156, 1111-1119.	0.4	58
49	Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary Disease Genome-Wide Association Loci. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1275-1284.	2.5	56
50	Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus. BMC Pulmonary Medicine, 2014, 14, 164.	0.8	55
51	Omics and the Search for Blood Biomarkers in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 143-149.	1.4	54
52	Chest computed tomography-derived lowÂfat-free mass index and mortality inÂCOPD. European Respiratory Journal, 2017, 50, 1701134.	3.1	53
53	Clinical Epidemiology of COPD. Chest, 2019, 156, 228-238.	0.4	53
54	Exome Array Analysis Identifies a Common Variant in <i>IL27</i> Associated with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 48-57.	2.5	52

#	Article	IF	CITATIONS
55	Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease. Respiratory Research, 2014, 15, 113.	1.4	51
56	Family History Is a Risk Factor for COPD. Chest, 2011, 140, 343-350.	0.4	49
57	Metformin: Experimental and Clinical Evidence for a Potential Role in Emphysema Treatment. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 651-666.	2.5	49
58	RNA sequencing identifies novel non-coding RNA and exon-specific effects associated with cigarette smoking. BMC Medical Genomics, 2017, 10, 58.	0.7	48
59	Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells. Genomics, 2013, 101, 263-272.	1.3	46
60	Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1353-1363.	2.5	46
61	Ultrasound Guidance for Medical Thoracoscopy: A Novel Approach. Respiration, 2003, 70, 299-301.	1.2	45
62	Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 757-771.	2.5	45
63	Analysis of Asthma–Chronic Obstructive Pulmonary Disease Overlap Syndrome Defined on the Basis of Bronchodilator Response and Degree of Emphysema. Annals of the American Thoracic Society, 2016, 13, 1483-1489.	1.5	44
64	Clinical Approach to the Therapy of Asthma-COPD Overlap. Chest, 2019, 155, 168-177.	0.4	44
65	Machine Learning Characterization of COPD Subtypes. Chest, 2020, 157, 1147-1157.	0.4	44
66	Opportunities and Challenges in the Genetics of COPD 2010: An International COPD Genetics Conference Report. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2011, 8, 121-135.	0.7	43
67	Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Human Molecular Genetics, 2015, 24, 1200-1210.	1.4	43
68	RNA-sequencing across three matched tissues reveals shared and tissue-specific gene expression and pathway signatures of COPD. Respiratory Research, 2019, 20, 65.	1.4	43
69	Epidemiology, radiology, and genetics of nicotine dependence in COPD. Respiratory Research, 2011, 12, 9.	1.4	42
70	Integrative genomics of chronic obstructive pulmonary disease. Biochemical and Biophysical Research Communications, 2014, 452, 276-286.	1.0	41
71	Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study. Respiratory Research, 2018, 19, 209.	1.4	41
72	Combined Forced Expiratory Volume in 1 Second and Forced Vital Capacity Bronchodilator Response, Exacerbations, and Mortality in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2019, 16, 826-835.	1.5	41

#	Article	IF	CITATIONS
73	Transforming Growth Factor- \hat{l}^2 Receptor-3 Is Associated with Pulmonary Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 324-331.	1.4	40
74	Comorbidities of COPD Have a Major Impact on Clinical Outcomes, Particularly in African Americans. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2014, 1, 105-114.	0.5	40
75	Computed Tomography Phenotypes in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2007, 4, 331-337.	0.7	35
76	Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease. Human Genomics, 2018, 12, 1.	1.4	35
77	Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Scientific Reports, 2020, 10, 3361.	1.6	35
78	Genetic association analysis of COPD candidate genes with bronchodilator responsiveness. Respiratory Medicine, 2009, 103, 552-557.	1.3	34
79	National Emphysema Treatment Trial State of the Art: Genetics of Emphysema. Proceedings of the American Thoracic Society, 2008, 5, 486-493.	3.5	33
80	DNAH5 is associated with total lung capacity in chronic obstructive pulmonary disease. Respiratory Research, 2014, 15, 97.	1.4	33
81	Clinical and radiographic correlates of hypoxemia and oxygen therapy in the COPDGene study. Respiratory Medicine, 2011, 105, 1211-1221.	1.3	32
82	Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Human Molecular Genetics, 2018, 27, 3801-3812.	1.4	32
83	Genetic Linkage and Association Analysis of COPD-Related Traits on Chromosome 8p. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2006, 3, 189-194.	0.7	31
84	Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD. BMC Systems Biology, 2014, 8, 78.	3.0	31
85	Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease. Respiratory Research, 2017, 18, 72.	1.4	31
86	Unsupervised discovery of phenotype-specific multi-omics networks. Bioinformatics, 2019, 35, 4336-4343.	1.8	30
87	Clarifying the Risk of Lung Disease in SZ Alpha-1 Antitrypsin Deficiency. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 73-82.	2.5	30
88	Multistudy Fine Mapping of Chromosome 2q Identifies <i>XRCC5</i> as a Chronic Obstructive Pulmonary Disease Susceptibility Gene. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 605-613.	2.5	29
89	Sex-Based Genetic Association Study Identifies <i>CELSR1</i> as a Possible Chronic Obstructive Pulmonary Disease Risk Locus among Women. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 332-341.	1.4	28
90	Pharmacogenetics of chronic obstructive pulmonary disease: challenges and opportunities. Pharmacogenomics, 2010, 11, 237-247.	0.6	26

#	Article	IF	CITATIONS
91	<i>IREB2</i> and <i>GALC</i> Are Associated with Pulmonary Artery Enlargement in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 365-376.	1.4	26
92	Phenotypic and genetic heterogeneity among subjects with mild airflow obstruction in COPDGene. Respiratory Medicine, 2014, 108, 1469-1480.	1.3	24
93	Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 20-28.	1.4	24
94	Genetic Associations With Hypoxemia and Pulmonary Arterial Pressure in COPD. Chest, 2009, 135, 737-744.	0.4	23
95	Radiological correlates and clinical implications of the paradoxical lung function response to \hat{l}^2 2 agonists: an observational study. Lancet Respiratory Medicine,the, 2014, 2, 911-918.	5.2	21
96	Clinical, physiologic, and radiographic factors contributing to development of hypoxemia in moderate to severe COPD: a cohort study. BMC Pulmonary Medicine, 2016, 16, 169.	0.8	21
97	Identification of an emphysema-associated genetic variant near TGFB2 with regulatory effects in lung fibroblasts. ELife, 2019, 8, .	2.8	21
98	Alpha-1 Antitrypsin MZ Heterozygosity Is an Endotype of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 313-323.	2.5	21
99	Integrative genomics identifies new genes associated with severe COPD and emphysema. Respiratory Research, 2018, 19, 46.	1.4	20
100	Genome-Wide Association Study: Functional Variant rs2076295 Regulates Desmoplakin Expression in Airway Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1225-1236.	2.5	20
101	Sex-specific associations with DNA methylation in lung tissue demonstrate smoking interactions. Epigenetics, 2021, 16, 692-703.	1.3	20
102	Common Genetic Variants Associated with Resting Oxygenation in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 678-687.	1.4	19
103	Multi-omics subtyping pipeline for chronic obstructive pulmonary disease. PLoS ONE, 2021, 16, e0255337.	1.1	19
104	Clinical Phenotypes of Atopy and Asthma in COPD. Chest, 2020, 158, 2333-2345.	0.4	19
105	Beyond GWAS in COPD: Probing the Landscape between Gene-Set Associations, Genome-Wide Associations and Protein-Protein Interaction Networks. Human Heredity, 2014, 78, 131-139.	0.4	18
106	Lung function trajectories in children with post-prematurity respiratory disease: identifying risk factors for abnormal growth. Respiratory Research, 2021, 22, 143.	1.4	18
107	Immunoglobulin E as a Biomarker for the Overlap of Atopic Asthma and Chronic Obstructive Pulmonary Disease. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2020, 7, 1-12.	0.5	18
108	Longitudinal Association Between Muscle Loss and Mortality in Ever Smokers. Chest, 2022, 161, 960-970.	0.4	18

#	Article	IF	Citations
109	Xenobiotic metabolizing enzyme gene polymorphisms predict response to lung volume reduction surgery. Respiratory Research, 2007, 8, 59.	1.4	17
110	Analysis of Exonic Elastin Variants in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 751-755.	1.4	17
111	Risk factors for COPD exacerbations in inhaled medication users: the COPDGene study biannual longitudinal follow-up prospective cohort. BMC Pulmonary Medicine, 2016, 16, 28.	0.8	17
112	Estimating drivers of cell state transitions using gene regulatory network models. BMC Systems Biology, 2017, 11, 139.	3.0	17
113	Meta-analysis of peripheral blood gene expression modules for COPD phenotypes. PLoS ONE, 2017, 12, e0185682.	1.1	17
114	Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease. Journal of Molecular Medicine, 2018, 96, 1375-1385.	1.7	17
115	Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene. PLoS Genetics, 2019, 15, e1008229.	1.5	17
116	An evolutionarily conserved non-synonymous SNP in a leucine-rich repeat domain determines anthracnose resistance in watermelon. Theoretical and Applied Genetics, 2019, 132, 473-488.	1.8	17
117	Genome-wide linkage analysis of pulmonary function in families of children with asthma in Costa Rica. Thorax, 2007, 62, 224-230.	2.7	16
118	Whole-genome association analyses of sleep-disordered breathing phenotypes in the NHLBI TOPMed program. Genome Medicine, 2021, 13, 136.	3.6	16
119	Integrative Genomics Analysis Identifies ACVR1B as a Candidate Causal Gene of Emphysema Distribution. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 388-398.	1.4	15
120	DNA Methylation Is Predictive of Mortality in Current and Former Smokers. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1099-1109.	2.5	15
121	Development of a Blood-based Transcriptional Risk Score for Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 161-170.	2.5	15
122	Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline. Chest, 2018, 153, 368-377.	0.4	14
123	Relative contributions of family history and a polygenic risk score on COPD and related outcomes: COPDGene and ECLIPSE studies. BMJ Open Respiratory Research, 2020, 7, e000755.	1.2	14
124	Body mass index change in gastrointestinal cancer and chronic obstructive pulmonary disease is associated with Dedicator of Cytokinesis 1. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 428-436.	2.9	13
125	Vitamin D deficiency is associated with respiratory symptoms and airway wall thickening in smokers with and without COPD: a prospective cohort study. BMC Pulmonary Medicine, 2020, 20, 123.	0.8	13
126	Characterizing Functional Lung Heterogeneity in COPD Using Reference Equations for CT Scan-Measured Lobar Volumes. Chest, 2013, 143, 1607-1617.	0.4	12

#	Article	IF	Citations
127	Identifying miRNA-mRNA Networks Associated With COPD Phenotypes. Frontiers in Genetics, 2021, 12, 748356.	1.1	12
128	Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1803-1817.	2.9	11
129	High-Throughput Sequencing in Respiratory, Critical Care, and Sleep Medicine Research. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2019, 16, 1-16.	1.5	9
130	Do sputum or circulating blood samples reflect the pulmonary transcriptomic differences of COPD patients? A multi-tissue transcriptomic network META-analysis. Respiratory Research, 2019, 20, 5.	1.4	9
131	Alpha-1 Antitrypsin Deficiency as an Incidental Finding in Clinical Genetic Testing. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 246-248.	2.5	9
132	Hedgehog interacting protein–expressing lung fibroblasts suppress lymphocytic inflammation in mice. JCI Insight, 2021, 6, .	2.3	9
133	Diagnosing alpha-1 antitrypsin deficiency: the first step in precision medicine. F1000Research, 2017, 6, 2049.	0.8	9
134	Pharmacogenomics of chronic obstructive pulmonary disease. Expert Review of Respiratory Medicine, 2019, 13, 459-470.	1.0	8
135	Somatotypes trajectories during adulthood and their association with COPD phenotypes. ERJ Open Research, 2020, 6, 00122-2020.	1.1	8
136	Commercially Available Blocking Oligonucleotides Effectively Suppress Unwanted Hemolysis-Related miRNAs in a Large Whole-Blood RNA Cohort. Journal of Molecular Diagnostics, 2021, 23, 671-682.	1.2	8
137	Common and Rare Variants Genetic Association Analysis of Cigarettes per Day Among Ever-Smokers in Chronic Obstructive Pulmonary Disease Cases and Controls. Nicotine and Tobacco Research, 2019, 21, 714-722.	1.4	7
138	Improved prediction of smoking status via isoform-aware RNA-seq deep learning models. PLoS Computational Biology, 2021, 17, e1009433.	1.5	7
139	Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Respiratory Research, 2022, 23, 97.	1.4	7
140	Haemoglobin as a biomarker for clinical outcomes in chronic obstructive pulmonary disease. ERJ Open Research, 2021, 7, 00068-2021.	1.1	6
141	Blood RNA sequencing shows overlapping gene expression across COPD phenotype domains. Thorax, 2022, 77, 115-122.	2.7	6
142	Peripheral blood microbial signatures in current and former smokers. Scientific Reports, 2021, 11, 19875.	1.6	6
143	<i>CFTR</i> variants are associated with chronic bronchitis in smokers. European Respiratory Journal, 2022, 60, 2101994.	3.1	6
144	sJIVE: Supervised joint and individual variation explained. Computational Statistics and Data Analysis, 2022, 175, 107547.	0.7	6

#	Article	IF	Citations
145	Whole-Genome Sequencing in Common Respiratory Diseases. Ready, Set, Go!. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 121-122.	2,5	5
146	Peripheral Blood Gene Expression Signatures of Eosinophilic Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 398-401.	1.4	5
147	Transcriptomic Signature of Asthma–Chronic Obstructive Pulmonary Disease Overlap in Whole Blood. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 268-271.	1.4	5
148	Genetic Determinants of Functional Impairment in Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 2006, 3, 476-476.	3.5	4
149	Significance of Medication History at the Time of Entry into the COPDGene Study: Relationship with Exacerbation and CT Metrics. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2015, 12, 366-373.	0.7	4
150	Heme metabolism genes Downregulated in COPD Cachexia. Respiratory Research, 2020, 21, 100.	1.4	4
151	An interferon-inducible signature of airway disease from blood gene expression profiling. European Respiratory Journal, 2022, 59, 2100569.	3.1	4
152	Cigarette smoking-associated isoform switching and $3\hat{a}\in^2$ UTR lengthening via alternative polyadenylation. Genomics, 2021, 113, 4184-4195.	1.3	3
153	Alternative poly-adenylation modulates $\hat{l}\pm 1$ -antitrypsin expression in chronic obstructive pulmonary disease. PLoS Genetics, 2021, 17, e1009912.	1.5	3
154	Blood miRNAs Are Linked to Frequent Asthma Exacerbations in Childhood Asthma and Adult COPD. Non-coding RNA, 2022, 8, 27.	1.3	3
155	SOX5 Is A Candidate Gene For COPD Susceptibility And Is Necessary For Lung Development. , 2010, , .		2
156	Found in Translation: Multi-omics Assessment of the Chronic Obstructive Pulmonary Disease–Lung Cancer Interaction. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 276-277.	2.5	2
157	Genetic Determinants in Airways Obstructive Diseases: The Case of Asthma Chronic Obstructive Pulmonary Disease Overlap. Immunology and Allergy Clinics of North America, 2022, 42, 559-573.	0.7	1
158	Reply. Journal of Allergy and Clinical Immunology, 2018, 142, 2013-2014.	1.5	0
159	Inhaled Medication Use in Smokers With Normal Spirometry. Respiratory Care, 2021, 66, 652-660.	0.8	0