John K Crane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3037612/publications.pdf Version: 2024-02-01

IOHN K CRANE

#	Article	lF	CITATIONS
1	Role of the SOS Response in the Generation of Antibiotic Resistance <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, e0001321.	1.4	24
2	Psychoactive Drugs Induce the SOS Response and Shiga Toxin Production in Escherichia coli. Toxins, 2021, 13, 437.	1.5	7
3	Cross-Talk between Probiotic Nissle 1917 and Human Colonic Epithelium Affects the Metabolite Composition and Demonstrates Host Antibacterial Effect. Metabolites, 2021, 11, 841.	1.3	1
4	Inhibition of SOS Response by Nitric Oxide Donors in Escherichia coli Blocks Toxin Production and Hypermutation. Frontiers in Cellular and Infection Microbiology, 2021, 11, 798136.	1.8	4
5	Metal Nanoparticles in Infection and Immunity. Immunological Investigations, 2020, 49, 794-807.	1.0	18
6	Pathogenic genetic variations ofC. acnesare associated with clinically relevant orthopedic shoulder infections. Journal of Orthopaedic Research, 2020, 38, 2731-2739.	1.2	4
7	Effect of Blue Light and Photosensitizers on Cutibacterium acnes on Shoulder Periprosthetic Joint Infection Isolates. Journal of Bone and Joint Infection, 2020, 5, 187-197.	0.6	10
8	Hemolysis Is a Diagnostic Adjuvant for Propionibacterium acnes Orthopaedic Shoulder Infections. Journal of the American Academy of Orthopaedic Surgeons, The, 2019, 27, 136-144.	1.1	9
9	Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. Frontiers in Cellular and Infection Microbiology, 2018, 8, 410.	1.8	31
10	Intrathecal spinal abscesses due to <i>Candida albicans</i> in an immunocompetent man. BMJ Case Reports, 2018, 2018, bcr-2017-223326.	0.2	3
11	Immunomodulatory Effects of Antimicrobial Drugs. Immunological Investigations, 2017, 46, 847-863.	1.0	8
12	Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli. PLoS ONE, 2017, 12, e0178303.	1.1	46
13	Propionibacterium acnes Susceptibility and Correlation with Hemolytic Phenotype. Infectious Diseases: Research and Treatment, 2016, 9, IDRT.S40539.	0.7	10
14	Biological Activities of Uric Acid in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli. Infection and Immunity, 2016, 84, 976-988.	1.0	12
15	Immunotherapy for Infectious Diseases: Past, Present, and Future. Immunological Investigations, 2015, 44, 731-737.	1.0	22
16	Pro-inflammatory effects of uric acid in the gastrointestinal tract. Immunological Investigations, 2014, 43, 255-266.	1.0	17
17	Resurgence of penicillin-susceptible Staphylococcus aureus at a hospital in New York State, USA. Journal of Antimicrobial Chemotherapy, 2014, 69, 280-281.	1.3	13
18	Use of ceftaroline after glycopeptide failure to eradicate meticillin-resistant Staphylococcus aureus bacteraemia with elevated vancomycin minimum inhibitory concentrations. International Journal of Antimicrobial Agents, 2014, 44, 557-563.	1.1	35

JOHN K CRANE

#	Article	IF	CITATIONS
19	Zinc protects against shiga-toxigenic Escherichia coli by acting on host tissues as well as on bacteria. BMC Microbiology, 2014, 14, 145.	1.3	33
20	Hemolysis as a clinical marker for propionibacterium acnes orthopedic infection. American Journal of Orthopedics, 2014, 43, E93-7.	0.7	25
21	Antimicrobial Susceptibility of Propionibacterium acnes Isolates from Shoulder Surgery. Antimicrobial Agents and Chemotherapy, 2013, 57, 3424-3426.	1.4	95
22	Role of Host Xanthine Oxidase in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli. Infection and Immunity, 2013, 81, 1129-1139.	1.0	67
23	From ambivalent to divalent. Virulence, 2013, 4, 589-591.	1.8	1
24	Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic <i><i>Escherichia coli. Gut Microbes, 2013, 4, 388-391.</i></i>	4.3	37
25	Zinc activates KCNQ1 and KCNN4 K + channels in T84 secretory epithelial cells. FASEB Journal, 2013, 27, 913.28.	0.2	Ο
26	Zinc–induced envelope stress diminishes type III secretion in enteropathogenic Escherichia coli. BMC Microbiology, 2012, 12, 123.	1.3	24
27	Virulence Inhibition by Zinc in Shiga-Toxigenic <i>Escherichia coli</i> . Infection and Immunity, 2011, 79, 1696-1705.	1.0	54
28	Lessons from Enteropathogenic Escherichia coli. Microbe Magazine, 2010, 5, 66-71.	0.4	1
29	Feedback effects of host-derived adenosine on enteropathogenic <i>Escherichia coli</i> . FEMS Immunology and Medical Microbiology, 2009, 57, 214-228.	2.7	24
30	Zinc for Infectious Diarrhea in Developed Countries: Should We Be Sprinkling Our Own Lawns?. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46, 484-485.	0.9	4
31	Effect of Zinc in Enteropathogenic <i>Escherichia coli</i> Infection. Infection and Immunity, 2007, 75, 5974-5984.	1.0	54
32	Ecto-5′-nucleotidase and intestinal ion secretion by enteropathogenic Escherichia coli. Purinergic Signalling, 2007, 3, 233-246.	1.1	18
33	Mutual Enhancement of Virulence by Enterotoxigenic and Enteropathogenic Escherichia coli. Infection and Immunity, 2006, 74, 1505-1515.	1.0	31
34	Externalization of host cell protein kinase C during enteropathogenic Escherichia coli infection. Cell Death and Differentiation, 2005, 12, 115-127.	5.0	23
35	Two pathways for ATP release from host cells in enteropathogenicEscherichia coliinfection. American Journal of Physiology - Renal Physiology, 2005, 289, G407-G417.	1.6	26
36	Pulmonary mucormycosis in a patient with chronic obstructive pulmonary disease: Diagnosis by fine needle aspiration cytology. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 588-589.	0.4	4

JOHN K CRANE

#	Article	IF	CITATIONS
37	Release of ATP during host cell killing by enteropathogenic <i>E. coli</i> and its role as a secretory mediator. American Journal of Physiology - Renal Physiology, 2002, 283, G74-G86.	1.6	70
38	Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cellular Microbiology, 2001, 3, 197-211.	1.1	137
39	Redistribution of Cyclic GMP in Response to Sodium Butyrate in Colon Cells. Archives of Biochemistry and Biophysics, 2000, 376, 163-170.	1.4	11
40	Preformed Bacterial Toxins. Clinics in Laboratory Medicine, 1999, 19, 583-599.	0.7	16
41	Host Cell Death due to Enteropathogenic Escherichia coli Has Features of Apoptosis. Infection and Immunity, 1999, 67, 2575-2584.	1.0	104
42	Mycobacterium bovis BCG Causing Vertebral Osteomyelitis (Pott's Disease) Following Intravesical BCG Therapy. Journal of Clinical Microbiology, 1999, 37, 2106-2108.	1.8	50
43	Toxic shock syndrome after mastoidectomyâ~†â~†â~†â~â~â~ Otolaryngology - Head and Neck Surgery, 1998	8, 1 1.8 , 70	1-702.
44	Activation of host cell protein kinase C by enteropathogenic Escherichia coli. Infection and Immunity, 1997, 65, 3277-3285.	1.0	98
45	Phosphorylation and activation of the intestinal guanylyl cyclase receptor for Escherichia coli heat-stable toxin by protein kinase C. Molecular and Cellular Biochemistry, 1996, 165, 111-20.	1.4	46
46	Oligosaccharides from Human Milk Block Binding and Activity of the Escherichia coli Heat-Stable Enterotoxin (STa) in T84 Intestinal Cells , ,. Journal of Nutrition, 1994, 124, 2358-2364.	1.3	72
47	Syncope and cardiac arrhythmia due to an interaction between intraconazole and terfenadine. American Journal of Medicine, 1993, 95, 445-446.	0.6	79
48	St. Louis Encephalitis in Patients with Human Immunodeficiency Virus Infection. Clinical Infectious Diseases, 1993, 17, 140-141.	2.9	25
49	Regulation of intestinal guanylate cyclase by the heat-stable enterotoxin of Escherichia coli (STa) and protein kinase C. Infection and Immunity, 1992, 60, 5004-5012.	1.0	38
50	Pulmonary Nocardiosis in AIDS. Chest, 1991, 100, 295-296.	0.4	8
51	Laboratory diagnosis of gastrointestinal infections. Current Opinion in Infectious Diseases, 1991, 4, 84-90.	1.3	0
52	Carbachol mimics phorbol esters in its ability to enhance cyclic GMP production by STa, the heat-stable toxin ofEscherichia coli. FEBS Letters, 1990, 274, 199-202.	1.3	19
53	Phorbol esters enhance the cyclic GMP response of T84 cells to the heat-stable enterotoxin of Escherichia coli (STa). Infection and Immunity, 1990, 58, 1402-1407.	1.0	43
54	Failure of pertussis toxin to inhibit activation of guanylate cyclase by the heat-stable enterotoxin of Escherichia coli (STa) in the T84 cell line. Infection and Immunity, 1989, 57, 1186-1191.	1.0	15

#	Article	IF	CITATIONS
55	Non-dopaminergic nigrostriatal pathway. Brain Research, 1981, 213, 291-305.	1.1	70