Jing Jing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3037439/publications.pdf Version: 2024-02-01

LING LING WANG

#	Article	IF	CITATIONS
1	A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Critical Reviews in Food Science and Nutrition, 2022, 62, 4053-4094.	10.3	45
2	Physicochemical and functional properties of the Antarctic krill proteins modified by succinylation. LWT - Food Science and Technology, 2022, 154, 112832.	5.2	8
3	Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application. Food Research International, 2022, 151, 110847.	6.2	8
4	Anti-tyrosinase, antioxidant and antibacterial activities of gallic acid-benzylidenehydrazine hybrids and their application in preservation of fresh-cut apples and shrimps. Food Chemistry, 2022, 378, 132127.	8.2	22
5	Potent eradication of mixed-species biofilms using photodynamic inactivation coupled with slightly alkaline electrolyzed water. LWT - Food Science and Technology, 2022, 155, 112958.	5.2	6
6	Structural and functional properties of soluble Antarctic krill proteins covalently modified by rutin. Food Chemistry, 2022, 379, 132159.	8.2	14
7	Preparation and Characterization of Carvacrol-Loaded Caseinate/Zein-Composite Nanoparticles Using the Anti-Solvent Precipitation Method. Nanomaterials, 2022, 12, 2189.	4.1	10
8	Synthesis, antioxidant and anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents. Food Chemistry, 2021, 341, 128265.	8.2	87
9	Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic krill (Euphausia superba) proteins. Ultrasonics Sonochemistry, 2021, 71, 105364.	8.2	58
10	Photodynamic inactivation of planktonic Staphylococcus aureus by sodium magnesium chlorophyllin and its effect on the storage quality of lettuce. Photochemical and Photobiological Sciences, 2021, 20, 761-771.	2.9	7
11	Development and characterization of gliadin-based bioplastic films enforced by cinnamaldehyde. Journal of Cereal Science, 2021, 99, 103208.	3.7	13
12	Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature. International Journal of Food Microbiology, 2021, 345, 109152.	4.7	51
13	Characterization of a Novel Food Grade Emulsion Stabilized by the By- Product Proteins Extracted From the Head of Giant Freshwater Prawn (Macrobrachium rosenbergii). Frontiers in Nutrition, 2021, 8, 676500.	3.7	7
14	Novel 2,3-Dialdehyde Cellulose-Based Films with Photodynamic Inactivation Potency by Incorporating the β-Cyclodextrin/Curcumin Inclusion Complex. Biomacromolecules, 2021, 22, 2790-2801.	5.4	30
15	Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality. LWT - Food Science and Technology, 2021, 146, 111462.	5.2	23
16	Dual-species biofilms formation of Vibrio parahaemolyticus and Shewanella putrefaciens and their tolerance to photodynamic inactivation. Food Control, 2021, 125, 107983.	5.5	24
17	Application of the curcumin-mediated photodynamic inactivation for preserving the storage quality of salmon contaminated with L. monocytogenes. Food Chemistry, 2021, 359, 129974.	8.2	24
18	Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control, 2020, 108, 106886.	5.5	68

JING JING WANG

#	Article	IF	CITATIONS
19	Fabrication and characterization of wheat gliadin hydrogels with high strength and toughness. Journal of Cereal Science, 2020, 95, 103038.	3.7	13
20	Food-grade emulsions stabilized by marine Antarctic krill (Euphausia superba) proteins with long-term physico-chemical stability. LWT - Food Science and Technology, 2020, 128, 109492.	5.2	21
21	Insights Into the Role of Extracellular DNA and Extracellular Proteins in Biofilm Formation of Vibrio parahaemolyticus. Frontiers in Microbiology, 2020, 11, 813.	3.5	40
22	Effect of water-soluble dietary fiber resistant dextrin on flour and bread qualities. Food Chemistry, 2020, 317, 126452.	8.2	36
23	Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation. Food Control, 2020, 113, 107181.	5.5	70
24	Recovery and identification bioactive peptides from protein isolate of Spirulina platensis and their in vitro effectiveness against oxidative stressâ€induced erythrocyte hemolysis. Journal of the Science of Food and Agriculture, 2020, 100, 3776-3782.	3.5	11
25	Acidic electrolyzed water more effectively breaks down mature Vibrio parahaemolyticus biofilm than DNase I. Food Control, 2020, 117, 107312.	5.5	26
26	Mechanically Strong and Highly Tough Prolamin Protein Hydrogels Designed from Double-Cross-Linked Assembled Networks. ACS Applied Polymer Materials, 2019, 1, 1272-1279.	4.4	16
27	CRISPR-Cas9 knockout of qseB induced asynchrony between motility and biofilm formation in Escherichia coli. Canadian Journal of Microbiology, 2019, 65, 691-702.	1.7	16
28	Characterization of Mixed-Species Biofilm Formed by Vibrio parahaemolyticus and Listeria monocytogenes. Frontiers in Microbiology, 2019, 10, 2543.	3.5	40
29	Heat and edible salts induced aggregation of the N-terminal domain of HMW 1Dx5 and its effects on the interfacial properties. Food Hydrocolloids, 2018, 82, 388-398.	10.7	16
30	Dissecting the Disulfide Linkage of the N-Terminal Domain of HMW 1Dx5 and Its Contributions to Dough Functionality. Journal of Agricultural and Food Chemistry, 2017, 65, 6264-6273.	5.2	21
31	Role of N-terminal domain of HMW 1Dx5 in the functional and structural properties of wheat dough. Food Chemistry, 2016, 213, 682-690.	8.2	28
32	The soluble recombinant N-terminal domain of HMW 1Dx5 and its aggregation behavior. Food Research International, 2015, 78, 201-208.	6.2	23
33	Preliminary mechanism of acidic electrolyzed water ice on improving the quality and safety of shrimp. Food Chemistry, 2015, 176, 333-341.	8.2	34
34	Fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water treatment. International Journal of Food Microbiology, 2014, 179, 50-56.	4.7	39
35	Modeling Vibrio parahaemolyticus inactivation by acidic electrolyzed water on cooked shrimp using response surface methodology. Food Control, 2014, 36, 273-279.	5.5	32
36	Changes in physicochemical properties and bactericidal efficiency of acidic electrolyzed water ice and available chlorine decay kinetics during storage. LWT - Food Science and Technology, 2014, 59, 43-48.	5.2	15

#	Article	IF	CITATIONS
37	Effect of acidic electrolyzed water ice on quality of shrimp in dark condition. Food Control, 2014, 35, 207-212.	5.5	41
38	Use of Acidic Electrolyzed Water Ice for Preserving the Quality of Shrimp. Journal of Agricultural and Food Chemistry, 2013, 61, 8695-8702.	5.2	57