Giancarlo Forte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3037392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High CD4â€toâ€CD8 ratio identifies an atâ€risk population susceptible to lethal COVIDâ€19. Scandinavian Journal of Immunology, 2022, 95, e13125.	1.3	19
2	Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. Nanoscale, 2022, 14, 3452-3466.	2.8	1
3	Nanoscale probing and imaging of HIV-1 RNA in cells with a chimeric LNA–DNA sensor. Nanoscale, 2022, , .	2.8	0
4	Transforming the Chemical Structure and Bioâ€Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells. Advanced Materials, 2022, 34, e2107964.	11.1	12
5	A primer to traction force microscopy. Journal of Biological Chemistry, 2022, 298, 101867.	1.6	18
6	Dystrophic Muscle Affects Motoneuron Axon Outgrowth and NMJ Assembly. Advanced Materials Technologies, 2022, 7, .	3.0	6
7	5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway. Cancers, 2022, 14, 1630.	1.7	8
8	Multiscale Analysis of Extracellular Matrix Remodeling in the Failing Heart. Circulation Research, 2021, 128, 24-38.	2.0	60
9	YAP–TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death and Differentiation, 2021, 28, 1193-1207.	5.0	33
10	Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics, 2021, 113, 1349-1365.	1.3	14
11	NFAT signaling in human mesenchymal stromal cells affects extracellular matrix remodeling and antifungal immune responses. IScience, 2021, 24, 102683.	1.9	5
12	Calcineurin inhibitors reduce NFAT-dependent expression of antifungal pentraxin-3 by human monocytes. Journal of Leukocyte Biology, 2020, 107, 497-508.	1.5	11
13	<p>The Effect of Mindfulness-Based Stress Reduction (MBSR) on Depression, Cognition, and Immunity in Mild Cognitive Impairment: A Pilot Feasibility Study</p> . Clinical Interventions in Aging, 2020, Volume 15, 1365-1381.	1.3	34
14	Biomaterial and implant induced ossification: in vitro and in vivo findings. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1157-1168.	1.3	26
15	Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. Nanoscale, 2020, 12, 15402-15413.	2.8	4
16	Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 323.	2.0	13
17	Comparison of two human organoid models of lung and intestinal inflammation reveals Tollâ€like receptor signalling activation and monocyte recruitment. Clinical and Translational Immunology, 2020, 9, e1131.	1.7	31
18	Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Current Medicinal Chemistry, 2020, 27, 7234-7255.	1.2	7

GIANCARLO FORTE

#	Article	IF	CITATIONS
19	Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics, 2019, 11, 547.	2.0	18
20	Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells, 2019, 8, 53.	1.8	37
21	Editorial: Physico-Chemical Control of Cell Function. Frontiers in Physiology, 2019, 10, 355.	1.3	1
22	Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials, 2019, 205, 64-80.	5.7	72
23	DEFORMATION RESPONSE OF POLYDIMETHYLSILOXANE SUBSTRATES SUBJECTED TO UNIAXIAL QUASI-STATIC LOADING. Acta Polytechnica CTU Proceedings, 2019, 25, 79-82.	0.3	0
24	A Simple Vacuumâ€Based Microfluidic Technique to Establish Highâ€Throughput Organsâ€Onâ€Chip and 3D Cell Cultures at the Microscale. Advanced Materials Technologies, 2019, 4, 1800319.	3.0	15
25	Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues. Frontiers in Physiology, 2018, 9, 1417.	1.3	66
26	Cellular Mechanotransduction: From Tension to Function. Frontiers in Physiology, 2018, 9, 824.	1.3	594
27	Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness. Molecules, 2018, 23, 777.	1.7	18
28	Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics. Frontiers in Physiology, 2018, 9, 1121.	1.3	7
29	Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opinion on Drug Delivery, 2017, 14, 797-810.	2.4	25
30	YAP regulates cell mechanics by controlling focal adhesion assembly. Nature Communications, 2017, 8, 15321.	5.8	431
31	Tau Isoforms Imbalance Impairs the Axonal Transport of the Amyloid Precursor Protein in Human Neurons. Journal of Neuroscience, 2017, 37, 58-69.	1.7	78
32	Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. Materials, 2017, 10, 977.	1.3	113
33	Tau Isoforms Imbalance Impairs the Axonal Transport of the Amyloid Precursor Protein in Human Neurons. Journal of Neuroscience, 2017, 37, 58-69.	1.7	12
34	The combination of PDE4 and PDE5 inhibitors reduces YAP expression in IPF. , 2017, , .		0
35	The Role of the Transcription Factor E2F1 in Hepatocellular Carcinoma. Current Drug Delivery, 2016, 13, 1-1.	0.8	42
36	Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. Sensors, 2015, 15, 31142-31170.	2.1	124

GIANCARLO FORTE

#	Article	IF	CITATIONS
37	IL-12 involvement in myogenic differentiation of C2C12 in vitro. Biomaterials Science, 2015, 3, 469-479.	2.6	16
38	Biomaterials and bioactive molecules to drive differentiation in striated muscle tissue engineering. Frontiers in Physiology, 2015, 6, 52.	1.3	2
39	Novel Lipid and Polymeric Materials as Delivery Systems for Nucleic Acid Based Drugs. Current Drug Metabolism, 2015, 16, 427-452.	0.7	26
40	Cardiac tissue engineering: a reflection after a decade of hurry. Frontiers in Physiology, 2014, 5, 365.	1.3	6
41	A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds. Frontiers in Physiology, 2014, 5, 210.	1.3	23
42	Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function. Frontiers in Physiology, 2014, 5, 219.	1.3	4
43	Hippo Pathway Effectors Control Cardiac Progenitor Cell Fate by Acting as Dynamic Sensors of Substrate Mechanics and Nanostructure. ACS Nano, 2014, 8, 2033-2047.	7.3	127
44	Stable Phenotype and Function of Immortalized Linâ^'Sca-1+ Cardiac Progenitor Cells in Long-Term Culture: A Step Closer to Standardization. Stem Cells and Development, 2014, 23, 1012-1026.	1.1	13
45	Cultivation of Human Hepatocytes in the Quasi-Vivo R© System: From Isolation and Seeding to Quantification of Xenobiotic-Metabolizing Enzyme Expression and Activity. , 2014, , 51-68.		0
46	Towards the Generation of Patient-Specific Patches for Cardiac Repair. Stem Cell Reviews and Reports, 2013, 9, 313-325.	5.6	13
47	A Xenogeneic-Free Protocol for Isolation and Expansion of Human Adipose Stem Cells for Clinical Uses. PLoS ONE, 2013, 8, e67870.	1.1	29
48	Adult Stem Cells and Biocompatible Scaffolds as Smart Drug Delivery Tools for Cardiac Tissue Repair. Current Medicinal Chemistry, 2013, 20, 3429-3447.	1.2	11
49	Substrate Stiffness Modulates Gene Expression and Phenotype in Neonatal Cardiomyocytes <i>In Vitro</i> . Tissue Engineering - Part A, 2012, 18, 1837-1848.	1.6	88
50	Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness. Science and Technology of Advanced Materials, 2012, 13, 064205.	2.8	20
51	Substrate stiffness affects skeletal myoblast differentiation <i>in vitro</i> . Science and Technology of Advanced Materials, 2012, 13, 064211.	2.8	43
52	Self-Renewal and Multipotency Coexist in a Long-Term Cultured Adult Rat Dental Pulp Stem Cell Line: An Exception to the Rule?. Stem Cells and Development, 2012, 21, 3278-3288.	1.1	10
53	Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress. ACS Nano, 2012, 6, 3767-3775.	7.3	314
54	Inherently Bio-Active Scaffolds: Intelligent Constructs to Model the Stem Cell Niche. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 29-47.	0.7	0

GIANCARLO FORTE

#	Article	IF	CITATIONS
55	Systemic Delivery of Bone Marrow-Derived Mesenchymal Stromal Cells Diminishes Neuropathology in a Mouse Model of Krabbe's Disease. Stem Cells, 2011, 29, 1738-1751.	1.4	24
56	Human Cardiac Progenitor Cell Grafts as Unrestricted Source of Supernumerary Cardiac Cells in Healthy Murine Hearts. Stem Cells, 2011, 29, 2051-2061.	1.4	49
57	Cooperation of Biological and Mechanical Signals in Cardiac Progenitor Cell Differentiation. Advanced Materials, 2011, 23, 514-518.	11.1	34
58	Stem Cell Aligned Growth Induced by CeO ₂ Nanoparticles in PLGA Scaffolds with Improved Bioactivity for Regenerative Medicine. Advanced Functional Materials, 2010, 20, 1617-1624.	7.8	168
59	Cardiac progenitor cells: Potency and control. Journal of Cellular Physiology, 2010, 224, 590-600.	2.0	36
60	Thick Soft Tissue Reconstruction on Highly Perfusive Biodegradable Scaffolds. Macromolecular Bioscience, 2010, 10, 127-138.	2.1	27
61	Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomaterialia, 2010, 6, 1227-1237.	4.1	197
62	Agonist monoclonal antibodies against HGF receptor protect cardiac muscle cells from apoptosis. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1155-H1165.	1.5	31
63	An Omega-3 Fatty Acid-Enriched Diet Prevents Skeletal Muscle Lesions in a Hamster Model of Dystrophy. American Journal of Pathology, 2010, 177, 2176-2184.	1.9	25
64	Interfacing Sca-1posMesenchymal Stem Cells with Biocompatible Scaffolds with Different Chemical Composition and Geometry. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-10.	3.0	17
65	Criticality of the Biological and Physical Stimuli Array Inducing Resident Cardiac Stem Cell Determination. Stem Cells, 2008, 26, 2093-2103.	1.4	98
66	Tuning hierarchical architecture of 3D polymeric scaffolds for cardiac tissue engineering. Journal of Experimental Nanoscience, 2008, 3, 97-110.	1.3	22
67	Effects of physical factors on cardiac stem cells. Journal of Molecular and Cellular Cardiology, 2007, 42, S92-S93.	0.9	0
68	ALA-diet prevents myocardial damage in hereditary cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2007, 42, S65-S66.	0.9	0
69	α-Linolenic Acid-Enriched Diet Prevents Myocardial Damage and Expands Longevity in Cardiomyopathic Hamsters. American Journal of Pathology, 2006, 169, 1913-1924.	1.9	44
70	α-linolenic acid prevents TNF-α-induced apoptosis in neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2006, 40, 1001.	0.9	0
71	α-linolenic acid-enriched diet restores myocardial contractile function and expands longevity in cardiomyopathic hamster. Journal of Molecular and Cellular Cardiology, 2006, 40, 1001-1002.	0.9	1
72	Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells: Proliferation, Migration, and Differentiation. Stem Cells, 2006, 24, 23-33.	1.4	361

#	Article	IF	CITATIONS
73	Stem cell activation sustains hereditary hypertrophy in hamster cardiomyopathy. Journal of Pathology, 2005, 205, 397-407.	2.1	21
74	Effect of Lamivudine on Transmission of Human T-Cell Lymphotropic Virus Type 1 to Adult Peripheral Blood Mononuclear Cells In Vitro. Antimicrobial Agents and Chemotherapy, 2002, 46, 3080-3083.	1.4	28
75	Short Communication: Telomerase Activity of Human Peripheral Blood Mononuclear Cells in the Course of HTLV Type 1 Infection in Vitro. AIDS Research and Human Retroviruses, 2002, 18, 249-251.	0.5	12
76	INFLUENCE OF PRINTING AND LOADING DIRECTION ON MECHANICAL RESPONSE IN 3D PRINTED MODELS OF HUMAN TRABECULAR BONE. Acta Polytechnica CTU Proceedings, 0, 18, 24.	0.3	3