Saptarshi Majumdar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3037145/publications.pdf

Version: 2024-02-01

687363 610901 29 579 13 24 g-index citations h-index papers 29 29 29 757 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of solvents in the depolymerization of lignin into value-added products: a review. Biomass Conversion and Biorefinery, 2023, 13, 11383-11416.	4.6	10
2	Effective Utilization of Coal Processing Waste: Separation of Low Ash Clean Coal from Washery Rejects by Hydrothermal Treatment. Mineral Processing and Extractive Metallurgy Review, 2022, 43, 165-181.	5.0	12
3	Imaging Methods for the Assessment of a Complex Hydrogel as an Ocular Drug Delivery System for Glaucoma Treatment: Opportunities and Challenges in Preclinical Evaluation. Molecular Pharmaceutics, 2022, 19, 733-748.	4.6	10
4	Cross-linker-free sodium alginate and gelatin hydrogels: a multiscale biomaterial design framework. Journal of Materials Chemistry B, 2022, 10, 3614-3623.	5.8	14
5	Synergistic effect of Ni-Co alloying on hydrodeoxygenation of guaiacol over Ni-Co/Al2O3 catalysts. Molecular Catalysis, 2021, 499, 111290.	2.0	19
6	Oral Drug Delivery: Conventional to Long Acting New-Age Designs. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 23-42.	4.3	18
7	Gelatin nanofiber assisted zero order release of Amphotericin-B: A study with realistic drug loading for oral formulation. Materials Today Communications, 2020, 24, 100953.	1.9	11
8	A computational study on osmotic chemotaxis of a reactive Janusbot. Physics of Fluids, 2020, 32, 112018.	4.0	3
9	Compressed nanofibrous oral tablets: An ingenious way for controlled release kinetics of Amphotericin-B loaded gelatin nanofibers. Nano Structures Nano Objects, 2019, 19, 100367.	3.5	14
10	Thermocatalytic depolymerization of kraft lignin to guaiacols using HZSM-5 in alkaline water–THF co-solvent: a realistic approach. Green Chemistry, 2019, 21, 3864-3881.	9.0	32
11	Recycling of thermoplastic polystyrene waste using citrus peel extract for oil spill remediation. Journal of Applied Polymer Science, 2019, 136, 47886.	2.6	11
12	Physicochemical Response of Gelatin in a Coulombic Soup of Monovalent Salt: A Molecular Simulation and Experimental Study. Journal of Physical Chemistry B, 2019, 123, 1186-1194.	2.6	10
13	Hydrodeoxygenation of guaiacol over Mo, W and Ta modified supported nickel catalysts. Catalysis Today, 2019, 325, 117-130.	4.4	52
14	Piperine as a Placebo: Stability of Gelatin Capsules without a Cross-Linker. ACS Applied Bio Materials, 2018, 1, 1244-1253.	4.6	8
15	Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh. Materials Science and Engineering C, 2017, 76, 782-786.	7. 3	57
16	Natural fibre envelope for cross-linked and non-cross-linked hydrogel-drug conjugates: Innovative design for oral drug delivery. Materials Discovery, 2017, 8, 1-8.	3.3	14
17	Controlled Drug Release Formulation by Sequential Crosslinking of Multilayered Electrospun Gelatin Nanofiber Mat. MRS Advances, 2016, 1, 2107-2113.	0.9	8
18	Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release. Materials Today: Proceedings, 2016, 3, 3484-3491.	1.8	21

#	Article	IF	CITATIONS
19	In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochemical Engineering Journal, 2016, 105, 481-488.	3.6	70
20	Fast and Slow Release: Synthesis of Gelatin Casted-Film Based Drug Delivery System. Materials and Manufacturing Processes, 2016, 31, 223-230.	4.7	14
21	Sodium alginate and gelatin hydrogels: Viscosity effect on hydrophobic drug release. Materials Letters, 2016, 164, 76-79.	2.6	57
22	Kriging Surrogate Based Multi-objective Optimization of Bulk Vinyl Acetate Polymerization with Branching. Materials and Manufacturing Processes, 2015, 30, 394-402.	4.7	50
23	Multiobjective optimization of longâ€chain branched propylene polymerization. Polymer Engineering and Science, 2015, 55, 1067-1076.	3.1	3
24	Soya nuggets – a potential carrier: swelling kinetics and release of hydrophobic drugs. RSC Advances, 2015, 5, 92184-92188.	3.6	4
25	Estimation of interfacial tension for immiscible and partially miscible liquid systems by Dissipative Particle Dynamics. Chemical Physics Letters, 2014, 600, 62-67.	2.6	20
26	Multi-Objective Optimization of Bulk Vinyl Acetate Polymerization with Branching. Materials and Manufacturing Processes, 2014, 29, 210-217.	4.7	28
27	Studies on the performance of the conducting polymerâ€based molecular release system. Polymer Engineering and Science, 2011, 51, 2001-2012.	3.1	3
28	Mathematical modeling for the ionic inclusion process inside conducting polymerâ€based thinâ€films. Polymer Engineering and Science, 2008, 48, 2229-2237.	3.1	5
29	Extraction of clean coal from washery rejects and its effect on coking properties: an approach toward sustainable development. International Journal of Coal Preparation and Utilization, 0, , 1-23.	2.1	1