Juan Manuel PeÃ \pm a

List of Publications by Year in descending order

[^0]
1 Total positivity and Neville elimination. Linear Algebra and Its Applications, 1992, 165, 25-44.7 Shape preserving representations for trigonometric polynomial curves. Computer Aided Geometric
Progressive iterative approximation and bases with the fastest convergence rates. Computer Aided
Geometric Design, 2007, 24, 10-18.1.255
2.7Error bounds for linear complementarity problems for B-matrices. Applied Mathematics Letters, 2009,

19 Optimally Stable Multivariate Bases. Advances in Computational Mathematics, 2004, 20, 149-159. 67, 655-667.

A general class of Bernstein-like bases. Computers and Mathematics With Applications, 2007, 53,
1686-1703.

Corner cutting algorithms associated with optimal shape preserving representations. Computer Aided Geometric Design, 1999, 16, 883-906.
1.2

23 Factorizations of Cauchy-Vandermonde matrices. Linear Algebra and Its Applications, 1998, 284, 229 -237.
0.9

24 A basis of C-BÃ@zier splines with optimal properties. Computer Aided Geometric Design, 2002, 19, 291-295. 1.2
24 A basis of C-BÃ©zier splines with optimal properties. Computer Aided Geometric Design, 2002, 19, 291-295. 1.2
Error bounds for linear complementarity problems involving <mml:math

25 xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline"
 Applied Mathematics Letters, 2012, 25.,1379-1383.

26 Accurate Computations with Collocation Matrices of q -Bernstein Polynomials. SIAM Journal on
Matrix Analysis and Applications, 2015, 36, 880-893.

B-Nekrasov matrices and error bounds for linear complementarity problems. Numerical Algorithms,
2016, 72, 435-445.

28 Backward error analysis of Neville elimination. Applied Numerical Mathematics, 1997, 23, 193-204.
2.1

30

29 On the optimal stability of bases of univariate functions. Numerische Mathematik, 2002, 91, 305-318.
1.9

30

30 Convexity of rational curves and total positivity. Journal of Computational and Applied Mathematics,
1996, 71, 365-382.
2.0

29

31 M-matrices whose inverses are totally positive. Linear Algebra and Its Applications, 1995, 221, $189-193$.
0.9

28

32 Characterizations and stable tests for the Routhâ $€$ "Hurwitz conditions and for total positivity. Linear Algebra and Its Applications, 2004, 393, 319-332.
0.9

28

33 Error analysis of corner cutting algorithms. Numerical Algorithms, 1999, 22, 41-52.
1.9

27

Conditioning and accurate computations with Pascal matrices. Journal of Computational and Applied

Error bounds for the linear complementarity problem with a $̂ £-S D D$ matrix. Linear Algebra and Its
Applications, 2013, 438, 1339-1346.
0.9

24
Accurate computations with collocation matrices of rational bases. Applied Mathematics and
Computation, 2013, 219, 4354-4364.

Scaled pivoting in Gauss and Neville elimination for totally positive systems. Applied Numerical
2.1

Mathematics, 1993, 13, 345-355.

Accurate bidiagonal decomposition of totally positive Cauchyâ $€$ "Vandermonde matrices and43 Almost strict total positivity and a class of Hurwitz polynomials. Journal of Approximation Theory,
$2005,132,212-223$.
$0.8 \quad 19$
Characterizations and Decompositions of Almost Strictly Positive Matrices. SIAM Journal on Matrix Analysis and Applications, 2006, 28, 1-8.
45 On the generalized Ball bases. Advances in Computational Mathematics, 2006, 24, 263-280.
$1.6 \quad 18$
Mathematics With Applications, 2010, 59, 1509-1523.
Accurate computations of matrices with bidiagonal decomposition using methods for totally positive
matrices. Numerical Linear Algebra With Applications, 2013, 20, 413-424.
48 On Transforming a Tchebycheff System into
17
49 On the progressive iteration approximation property and alternative iterations. Computer Aided 1.2 17 Geometric Design, 2011, 28, 523-526.Optimal stability of the Lagrange formula and conditioning of the Newton formula. Journal of
55 Sign regular matrices and Neville elimination. Linear Algebra and Its Applications, 2007, 421, 53-62. 0.9 15Eigenvalue Localization Refinements for Matrices Related to Positivity. SIAM Journal on MatrixAnalysis and Applications, 2011, 32, 771-784.
1.4

Fast and accurate algorithms for Jacobiâ€"Stirling matrices. Applied Mathematics and Computation, $57 \quad \begin{aligned} & \text { Fast and accurate alg } \\ & 2014,236,253-259 .\end{aligned}$
2.2 15 Minimal non-cc-groups. Communications in Algebra, 1988, 16, 1231-1242.
65 A Corner Cutting Algorithm for Evaluating Rational BÃ@zier Surfaces and the Optimal Stability of the
Basis. SIAM Journal of Scientific Computing, 2007, 29, 1668-1682.
2.8 13
Are rational BÃ@zier surfaces monotonicity preserving?. Computer Aided Geometric Design, 2007, 24, 303-306.

1.2Optimal Conditioning of Bernstein Collocation Matrices. SIAM Journal on Matrix Analysis and73 Applications, 2010, 31, 990-996.
12

1.4

74 Accurate computations with LupaÅ\ddot{Y} matrices. Applied Mathematics and Computation, 2017, 303, $171-177$.
2.2
75 Accurate Algorithms for Bessel Matrices. Journal of Scientific Computing, 2019, 80, 1264-1278. 12

Accurate computations with Laguerre matrices. Numerical Linear Algebra With Applications, 2019, 26, e2217.
1.6

12

77 Some classes of nonsingular matrices and applications. Linear Algebra and Its Applications, 2013, 438,
1936-1945.
0.9

11

78 Tensor-product monotonicity preservation. Advances in Computational Mathematics, 1998, 9, 353-362.
1.6

10

79 Pivoting strategies leading to diagonal dominance by rows. Numerische Mathematik, 1998, 81, 293-304.
1.9

10

80 A note on the optimal stability of bases of univariate functions. Numerische Mathematik, 2006, 103, 151-154.
1.9

10

81	Three term recurrence for the evaluation of multivariate orthogonal polynomials. Journal of Approximation Theory, 2010, 162, 407-420.	0.8	10
82	Growth factors of pivoting strategies associated with Neville elimination. Journal of Computational and Applied Mathematics, 2011, 235, 1755-1762.	2.0	10
83	B \$\$_pi ^R\$\$ Ï€ R-matrices and error bounds for linear complementarity problems. Calcolo, 2017, 54, 813-822.	1.1	10
84	Accurate computations with collocation matrices of a general class of bases. Numerical Linear Algebra With Applications, 2018, 25, e2184.	1.6	10
85	Matrices with Sign Consistency of a Given Order. SIAM Journal on Matrix Analysis and Applications, 1995, 16, 1100-1106.	1.4	9

86 Pivoting strategies leading to small bounds of the errors for certain linear systems. IMA Journal of Numerical Analysis, 1996, 16, 141-153.
2.9

9

87 Representing circles with five control points. Computer Aided Geometric Design, 2003, 20, 501-511. 9

Evaluation algorithms for multivariate polynomials in Bernsteinâ€"BÃ@zier form. Journal of Approximation Theory, 2006, 143, 44-61.

[^1]Progressive iteration approximation and the geometric algorithm. CAD Computer Aided Design, 2012,
44, 143-145.

```
91 SVD update methods for large matrices and applications. Linear Algebra and Its Applications, 2019, 561,
41-62.
```

$0.9 \quad 9$

On the asymptotic optimality of error bounds for some linear complementarity problems. Numerical
1.9 92 Algorithms, 2019, 80, 521-532.
$1.9 \quad 9$
$2.2 \quad 9$
$94 \quad$ CC-groups with periodic central factor. Manuscripta Mathematica, 1990, 69, 93-105.
$0.6 \quad 8$

95 Locally graded minimal non CC-groups arep-groups. Archiv Der Mathematik, 1991, 57, 209 -211.
$0.5 \quad 8$

96 Characterizations of the Optimal Descartes' Rules of Signs. Mathematische Nachrichten, 1998, 189,
33-48.
$0.8 \quad 8$

97 Basis conversions among univariate polynomial representations. Comptes Rendus Mathematique, 2004,
339, 293-298.

Corner cutting systems. Computer Aided Geometric Design, 2005, 22, 81-97.
1.2

Error analysis of efficient evaluation algorithms for tensor product surfaces. Journal of
Computational and Applied Mathematics, 2008, 219, 156-169.

100 Minimal sets alternative to minimal GerÅigorin sets. Applied Numerical Mathematics, 2010, 60, 442-451.
2.1

8
101 Characterizations of Jacobi sign regular matrices. Linear Algebra and Its Applications, 2012, 436,
381-388.
$0.9 \quad 8$

102 Critical lengths of cycloidal spaces are zeros of Bessel functions. Calcolo, 2017, 54, 1521-1531.
1.1

8

103 Groups in which every proper subgroup is ?ernikov-by-nilpotent or nilpotent-by-?ernikov. Archiv Der
$0.5 \quad 7$
Mathematik, 1988, 51, 193-197.

Scaled Pivots and Scaled Partial Pivoting Strategies. SIAM Journal on Numerical Analysis, 2003, 41,
2.3

7
1022-1031.
$2.2 \quad 7$
105 A collection of examples where Neville elimination outpe

106 Eventually SDD matrices and eigenvalue localization. Applied Mathematics and Computation, 2015, 252, 535-540.
2.2

7

107 Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices. Applied
$2.2 \quad 7$
Mathematics and Computation, 2019, 358, 119-127.
7
111 A stable test to check if a matrix is a nonsingular \$M\$-matrix. Mathematics of Computation, 2004, 73,
$111 \quad$ 1385-1393.
$2.1 \quad 6$
Form. Computing (Vienna/New York), 2006, 77, 97-111.

On Zero-Preserving Linear Transformations. Journal of Mathematical Analysis and Applications, 2002,
266, 237-258.

119 Evaluation of the derivative of a polynomial in Bernstein form. Applied Mathematics and Computation,
2005, 167, 125-142.
$2.2 \quad 5$
Nilpotent-by-ÄCEernikov CC-groups. Journal of the Australian Mathematical Society Series A Pure
Mathematics and Statistics, 1992, 53, 120-130.

A Marsden Type Identity for Periodic Trigonometric Splines. Journal of Approximation Theory, 1993, 75, 248-265.
131 Simultaneous backward stability of Gau 1.6$0.8 \quad 4$132 On Descartes' rules of signs and their exactness. Mathematische Nachrichten, 2005, 278, 1706-1713.Refining Gerschgorin disks through new criteria for nonsingularity. Numerical Linear Algebra WithApplications, 2007, 14, 665-671.Growth factor and expected growth factor of some pivoting strategies. Journal of Computationaland Applied Mathematics, 2007, 202, 292-303.
Decompositions of strictly sign regular matrices. Linear Algebra and Its Applications, 2008, 429,1071-1081.
0.9

4

$$
\begin{aligned}
& \text { Positive symmetric matrices with exactly one positive eigenvalue. Linear Algebra and Its Applications, } \\
& 2009,430,1566-1573 .
\end{aligned}
$$

Positive symmetric matrices with exactly one positive eigenvalue. Linear Algebra and Its Applications, 2009, 430, 1566-1573. 137
Running error for the evaluation of rational BÃ@zier surfaces. Journal of Computational and Applied Mathematics, 2010, 233, 1685-1696. 2.0 4
1.6On the evaluation of rational triangular BÃ©zier surfaces and the optimal stability of the basis.1.6Advances in Computational Mathematics, 2013, 38, 701-721.

Eigenvalue localization and pivoting strategies for Gaussian elimination. Applied Mathematics and
141 153-167.

Optimal interval length for the collocation of the Newton interpolation basis. Numerical
Algorithms, 2019, 82, 895-908.
Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2022, 116, .

On the Relationship Between Graphs and Totally Positive Matrices. SIAM Journal on Matrix Analysis and Applications, 1998, 19, 369-377.

Monotonicity preservation of some polynomial and rational representations. , 0, , .

Strict Diagonal Dominance and Optimal Bounds for the Skeel Condition Number. SIAM Journal on Numerical Analysis, 2007, 45, 1107-1108.

Monotonicity preserving representations of non-polynomial surfaces. Journal of Computational and Applied Mathematics, 2010, 233, 2161-2169.

A Comparison of Different Progressive Iteration Approximation Methods. Lecture Notes in Computer Science, 2010, , 136-152.

Running error for the evaluation of rational BÃ ©zier surfaces through a robust algorithm. Journal of Computational and Applied Mathematics, 2011, 235, 1781-1789.

Almost strictly sign regular matrices and Neville elimination with two-determinant pivoting. Applied Mathematics and Computation, 2016, 289, 426-434.

> Comparing pivoting strategies for almost strictly sign regular matrices. Journal of Computational and Applied Mathematics, 2019, 354, 96-102.

Accurate bidiagonal decomposition and computations with generalized Pascal matrices. Journal of Computational and Applied Mathematics, 2021, 391, 113443.
2.0

3

157 On Some Zero-Increasing Operators. Acta Mathematica Hungarica, 2002, 94, 173-198. $\quad 0.5 \quad 3$

Accurate computations with matrices related to bases \{tiê̂»t\}. Advances in Computational Mathematics, 2022, 48, .
1.6

3

[^2]Accurate and efficient \$\$extit\{LDU\}\$\$ LDU decomposition of almost diagonally dominant Z-matrices.
163 BIT Numerical Mathematics, 2014, 54, 343-356. BIT Numerical Mathematics, 2014, 54, 343-356.
Backward stability with almost strictly sign regular matrices. Journal of Computational and Applied
Mathematics, 2017, 322, 71-80.

166 Error bounds for linear complementarity problems of \$\$B_\{pi \}^R\$\$-matrices. Computational and Applied Mathematics, 2021, 40, 1.
2.2

2
Refinable functions with general dilation and a stable test for generalized Routh-Hurwitz conditions.
Communications on Pure and Applied Analysis, 2007, 6, 809-818.

Loewner matrix ordering in estimation of the smallest singular value. Electronic Journal of Linear
Algebra, 0, 22, .
$0.6 \quad 2$

169	The work of Mariano Gasca. Advances in Computational Mathematics, 2007, 26, 1-8.	$1.6 \quad 1$

170 Hierarchical open Leontief models. Linear Algebra and Its Applications, 2008, 428, 2549-2559.
$0.9 \quad 1$

171 Sign consistent linear programming problems. Optimization, 2009, 58, 935-946.
1.7

1

Neville elimination: an efficient algorithm with application to chemistry. Journal of Mathematical
Chemistry, 2010, 48, 3-20.
1.5

1
172 Chemistry, 2010, 48, 3-20.

Required nonzero patterns for nonsingular sign regular matrices. Linear Algebra and Its Applications,
173 2010, 432, 1990-1994.
0.9

1

Eigenvalue localization and Neville elimination. Applied Mathematics and Computation, 2014, 242,
340-345.
$2.2 \quad 1$
,

Corner cutting evaluation algorithms for general rational curves. Revista De La Real Academia De
Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2015, 109, 117-123.

Spline approximation, Kronecker products and multilinear forms. Numerical Linear Algebra With
1.6

1
176 Applications, 2016, 23, 535-557.

177 Accurate inverses of Nekrasov Z-matrices. Linear Algebra and Its Applications, 2019, 574, 46-59.
$0.9 \quad 1$

178 Stability properties of disk polynomials. Numerical Algorithms, 2021, 87, 119-135.
1.9

1

High relative accuracy with matrices of <i>q</i>â€integers. Numerical Linear Algebra With Applications,
2021, 28, e2383.
1.6

1

180 On C-tensor and its application to eigenvalue localization. Linear and Multilinear Algebra, 0, , 1-18.
$181 \begin{aligned} & \text { Eigenvalue Localization for Totally Positive Matrices. Lecture Notes in Control and Information } \\ & \text { Sciences, 2009, , 123-130. }\end{aligned}$

Accurate and efficient computations with Wronskian matrices of Bernstein and related bases. Numerical Linear Algebra With Applications, 2022, 29, .

On the foundation of bases of spline spaces. Journal of Computational and Applied Mathematics, 2000, 119, 377-390.

Error analysis for the evaluation of rational Bezier curves. , 0, , .
o

185 Restricted Systems. Advances in Computational Mathematics, 2003, 18, 79-90.
1.6

0

186 Recent advances in shape preserving representations. , 0, , .
0

187 Preface: numerical and applied linear algebra. Advances in Computational Mathematics, 2011, 35, 99-102.
1.6

0

Simultaneous triangularization of commuting matrices for the solution of polynomial equations. Central European Journal of Mathematics, 2012, 10, 277-291.

A note on matrices with maximal growth factor for Neville elimination. Journal of Computational and Applied Mathematics, 2012, 236, 2971-2974.

Similarity to totally positive matrices and accurate computations. Linear Algebra and Its Applications, 2016, 491, 317-327.
0.9

Algorithmic characterization of pentadiagonal ASSR matrices. International Journal of Computer
Algorithmic characterization of pen
Mathematics, 2020, 97, 431-443.

192 Accurate determinants of some classes of matrices. Linear Algebra and Its Applications, 2021, 630, 1-14.
0.9
o
1.8

O

Rank of Linear and Quadratic Combinations of Matrices. Electronic Journal of Linear Algebra, 2020, 36, 169-176.

[^0]: Source: https:/|exaly.com/author-pdf/3036896/publications.pdf
 Version: 2024-02-01

[^1]: Convexity preserving scattered data interpolation using Powellâ $\epsilon^{\text {"S }}$ Sabin elements. Computer Aided
 Geometric Design, 2009, 26, 779-796.

[^2]: 161 Computation of the eigenvalues of convexity preserving matrices. Applied Mathematics Letters, 2009, 22, 470-474.

