

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3036383/publications.pdf

7ui Su

#	Article	IF	CITATIONS
1	Mitochondria-targeted Pt(IV) prodrugs conjugated with an aggregation-induced emission luminogen against breast cancer cells by dual modulation of apoptosis and autophagy inhibition. Journal of Inorganic Biochemistry, 2022, 226, 111653.	1.5	12
2	Biotinylated curcumin as a novel chemosensitizer enhances naphthalimide-induced autophagic cell death in breast cancer cells. European Journal of Medicinal Chemistry, 2022, 228, 114029.	2.6	10
3	A <scp>Rheinâ€Based</scp> Rh(<scp>III</scp>) Arene Complex with Antiâ€ŧumor Cell Proliferative Activity Inhibits <scp>RNA</scp> Demethylase <scp>FTO</scp> . Chinese Journal of Chemistry, 2022, 40, 1156-1164.	2.6	11
4	Fighting metallodrug resistance through alteration of drug metabolism and blockage of autophagic flux by mitochondria-targeting AlEgens. Chemical Science, 2022, 13, 1428-1439.	3.7	14
5	A New Strategy to Fight Metallodrug Resistance: Mitochondriaâ€Relevant Treatment through Mitophagy to Inhibit Metabolic Adaptations of Cancer Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
6	Modification of surface electronic structure via Ru-doping: Porous Ru–CoFeP nanocubes to boost the oxygen evolution reaction. Journal of Power Sources, 2022, 537, 231506.	4.0	5
7	Dual Mitochondria―and DNAâ€Targeting Coumarinâ€Pt(IV) Prodrug for the Enhancement of Anticancer Performance. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6
8	Using bio-orthogonally catalyzed lethality strategy to generate mitochondria-targeting anti-tumor metallodrugs <i>in vitro</i> and <i>in vivo</i> . National Science Review, 2021, 8, nwaa286.	4.6	30
9	Efficient MO Dye Degradation Catalyst of Cu(I)-Based Coordination Complex from Dissolution–Recrystallization Structural Transformation. Crystal Growth and Design, 2021, 21, 333-343.	1.4	12
10	Rigidity controlled structures of Zn(II)-based coordination complexes: Synthesis and photophysical property study. Journal of Molecular Structure, 2021, 1228, 129754.	1.8	2
11	Facile formation of Fe-doped NiCoP hollow nanocages as bifunctional electrocatalysts for overall water splitting. CrystEngComm, 2021, 23, 3861-3869.	1.3	17
12	Hydrogen sulfide triggered molecular agent for imaging and cancer therapy. Chemical Communications, 2021, 57, 1931-1934.	2.2	18
13	Hollow porous nanocuboids cobalt-based metal–organic frameworks with coordination defects as anode for enhanced lithium storage. Journal of Materials Science, 2021, 56, 17178-17190.	1.7	7
14	Photoactivated Osmium Arene Anticancer Complexes. Inorganic Chemistry, 2021, 60, 17450-17461.	1.9	18
15	A nitrogen-doped NiCo2S4/CoO hollow multi-layered heterostructure microsphere for efficient oxygen evolution in Zn–air batteries. Nanoscale, 2021, 13, 810-818.	2.8	38
16	Metalâ€Organic Frameworkâ€Derived Feâ€Doped Co _{1.11} Te ₂ Embedded in Nitrogenâ€Doped Carbon Nanotube for Water Splitting. ChemSusChem, 2020, 13, 5239-5247.	3.6	34
17	Coordination-Bond-Driven Dissolution–Recrystallization Structural Transformation with the Expansion of Cuprous Halide Aggregate. Inorganic Chemistry, 2020, 59, 13326-13334.	1.9	7
18	A lysosome-targeted ruthenium(II) polypyridyl complex as photodynamic anticancer agent. Journal of Inorganic Biochemistry, 2020, 210, 111132.	1.5	24

Zнı Su

#	Article	IF	CITATIONS
19	Unveiling the anti-cancer mechanism for half-sandwich and cyclometalated Ir(iii)-based complexes with functionalized α-lipoic acid. RSC Advances, 2020, 10, 5392-5398.	1.7	13
20	lmaging Dynamic Peroxynitrite Fluxes in Epileptic Brains with a Nearâ€Infrared Fluorescent Probe. Advanced Science, 2019, 6, 1900341.	5.6	83
21	A highly ruffled distorted nickel-imidazolylporphyrin framework with 1D open nano-sized channels. Inorganic Chemistry Communication, 2019, 104, 14-18.	1.8	6
22	Enhanced Catalytic Performance for Oxygen Reduction Reaction Derived from Nitrogen-Rich Tetrazolate-Based Heterometallic Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 2991-2999.	1.4	14
23	Tetrazolateâ€Based Cadmium(II) Fluorescent Metalâ€Organic Frameworks for Iron(III) Sensing and Methylene Blue (MB) Capture. European Journal of Inorganic Chemistry, 2019, 2019, 5066-5072.	1.0	6
24	Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn–air battery. Journal of Materials Chemistry A, 2019, 7, 24964-24972.	5.2	65
25	Cytochrome P450 119 Compoundsâ€I Formed by Chemical Oxidation and Photooxidation Are the Same Species. Chemistry - A European Journal, 2019, 25, 14015-14020.	1.7	6
26	Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands. Journal of Inorganic Biochemistry, 2018, 182, 194-199.	1.5	19
27	Rigid dinuclear ruthenium-arene complexes showing strong DNA interactions. Journal of Inorganic Biochemistry, 2018, 189, 30-39.	1.5	16
28	Shock Wave Chemistry in a Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 4619-4622.	6.6	80
29	Energy Storage during Compression of Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 4667-4670.	6.6	53
30	Bond breakage under pressure in a metal organic framework. Chemical Science, 2017, 8, 8004-8011.	3.7	77
31	A novel strategy to construct Janus metallamacrocycles with both a Ru–arene face and an imidazolium face. Dalton Transactions, 2017, 46, 16205-16215.	1.6	4
32	Compression-Induced Deformation of Individual Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2015, 137, 1750-1753.	6.6	66
33	Two-dimensional Mn(II) and Cd(II) networks with tetrazole-containing ligand and their properties. Inorganic Chemistry Communication, 2013, 36, 59-62.	1.8	7
34	Novel two-fold interpenetrated Zn-based metal-organic framework with triple-stranded right- and left-handed helical chains. Inorganic Chemistry Communication, 2013, 27, 18-21.	1.8	13
35	Rates of Fatty Acid Oxidations by P450 Compound I are pH Dependent. ChemBioChem, 2012, 13, 2061-2064.	1.3	9
36	Synthesis, Crystal Structure and Photoluminescent Property of Metalâ€Organic Frameworks with Mixed Carboxylate and Imidazole ontaining Ligands. Chinese Journal of Chemistry, 2012, 30, 2016-2022.	2.6	18

Zнı Su

#	Article	IF	CITATIONS
37	Homochiral ferroelectric three-dimensional cadmium(II) frameworks from racemic camphoric acid and 3,5-di(imidazol-1-yl)benzoic acid. Inorganic Chemistry Communication, 2012, 15, 317-320.	1.8	17
38	Rate ontrolling Isomerizations in Fatty Acid Oxidations by a Cytochrome P450 Compoundâ€I. Chemistry - A European Journal, 2012, 18, 2472-2476.	1.7	10
39	Oxidation of 10-undecenoic acid by cytochrome P450BM-3 and its Compound I transient. Organic and Biomolecular Chemistry, 2011, 9, 7427.	1.5	10
40	Anion- and auxiliary ligand-directed synthesis of cadmium(<scp>ii</scp>) complexes with 3,5-di(1H-imidazol-1-yl)benzoate. CrystEngComm, 2011, 13, 1539-1549.	1.3	44
41	Temperature dependent selective gas sorption of the microporous metal-imidazolate framework [Cu(L)] [H ₂ L = 1,4-di(1H-imidazol-4-yl)benzene]. Chemical Communications, 2011, 47, 752-754.	2.2	162
42	Syntheses, structures, and properties of lead(II) and nickel(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoate. Journal of Coordination Chemistry, 2011, 64, 170-178.	0.8	6
43	Novel Cobalt(II) Coordination Polymers Constructed from 3,3′,4,4′-Oxydiphthalic Acid and N-Donor Ligands: Syntheses, Crystal Structures, and Magnetic Properties. Crystal Growth and Design, 2011, 11, 3885-3894.	1.4	105
44	Syntheses, Characterization, and Properties of Three-Dimensional Pillared Frameworks with Entanglement. Crystal Growth and Design, 2011, 11, 1159-1169.	1.4	84
45	Syntheses, structures and photoluminescence properties of cadmium(II) and zinc(II) complexes with pyridinylcarboxamide-containing ligand. Inorganica Chimica Acta, 2011, 377, 138-143.	1.2	11
46	pH Dependent Structural Diversity of Metal Complexes with 5-(4 <i>H</i> -1,2,4-Triazol-4-yl)benzene-1,3-dicarboxylic Acid. Crystal Growth and Design, 2011, 11, 1901-1912.	1.4	127
47	Reversible Single-Crystal-to-Single-Crystal Transformation and Highly Selective Adsorption Property of Three-Dimensional Cobalt(II) Frameworks. Inorganic Chemistry, 2011, 50, 985-991.	1.9	124
48	Three-dimensional 3d-4f heterometallic coordination polymers: syntheses, structures and properties. Supramolecular Chemistry, 2011, 23, 117-124.	1.5	6
49	Syntheses, crystal structures and properties of three novel coordination polymers with tripodal imidazole-containing ligands and benzenetetracarboxylate. Science China Chemistry, 2010, 53, 2164-2169.	4.2	8
50	Syntheses and characterization of inorganic–organic hybrids with 4-(isonicotinamido)phthalate and some divalent metal centers. Polyhedron, 2010, 29, 2454-2461.	1.0	17
51	Synthesis, structure and property of manganese(II) complexes with mixed tetradentate imidazole-containing ligand and benzenedicarboxylate. Inorganica Chimica Acta, 2010, 363, 3550-3557.	1.2	14
52	Counteranion-directed assembly of zinc(II) coordination polymers with 1,3,5-tris(1-imidazolyl)benzene. Inorganic Chemistry Communication, 2010, 13, 1278-1280.	1.8	19
53	Interpenetrating and Self-Penetrating Zinc(II) Complexes with Rigid Tripodal Imidazole-Containing Ligand and Benzenedicarboxylate. Crystal Growth and Design, 2010, 10, 1911-1922.	1.4	152
54	Cadmium(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoate: topological and structural diversity tuned by counteranions. CrystEngComm, 2010, 12, 100-108.	1.3	70

Zні Su

#	Article	IF	CITATIONS
55	Synthesis, Structures, and Properties of Zinc(II) and Cadmium(II) Complexes with 1,2,4,5-Tetrakis(imidazol-1-ylmethyl)benzene and Multicarboxylate Ligands. Crystal Growth and Design, 2010, 10, 2553-2562.	1.4	80
56	Ligand-Directed and pH-Controlled Assembly of Chiral 3dâ^'3d Heterometallic Metalâ^'Organic Frameworks. Crystal Growth and Design, 2010, 10, 3515-3521.	1.4	137
57	Highly Connected Three-Dimensional Metalâ^'Organic Frameworks Based on Polynuclear Secondary Building Units. Crystal Growth and Design, 2010, 10, 3675-3684.	1.4	73
58	Synthesis, Crystal Structure, and Photoluminescence of a Series of Zinc(II) Coordination Polymers with 1,4-Di(1 <i>H</i> -imidazol-4-yl)benzene and Varied Carboxylate Ligands. Crystal Growth and Design, 2010, 10, 812-822.	1.4	112
59	Metal–organic frameworks with oxazoline-containing tripodal ligand: structure changes via reaction medium and metal-to-ligand ratio. CrystEngComm, 2010, 12, 4328.	1.3	23
60	Syntheses, crystal structures and properties of silver(i) and copper(ii) complexes with an oxazoline-containing tetradentate ligand. New Journal of Chemistry, 2010, 34, 2436.	1.4	7
61	Three-dimensional lanthanide–silver heterometallic coordination polymers: syntheses, structures and properties. CrystEngComm, 2010, 12, 3267.	1.3	42
62	Synthesis and characterization of metal complexes with a mixed 4-imidazole-containing ligand and a variety of multi-carboxylic acids. CrystEngComm, 2010, 12, 3091.	1.3	51
63	Spontaneous resolution of two homochiral ferroelectric cadmium(ii) frameworks and an achiral framework from a one-pot reaction involving achiral rigid ligands. CrystEngComm, 2010, 12, 2040.	1.3	72
64	Metal–organic frameworks with pyridyl- and carboxylate-containing ligands: syntheses, structures and properties. CrystEngComm, 2010, 12, 1935.	1.3	34
65	Unprecedented three-dimensional 10-connected bct nets based on trinuclear secondary building units and their magnetic behavior. CrystEngComm, 2010, 12, 4339.	1.3	29
66	Syntheses and crystal structures of two supramolecular isomers of manganese(II) with 3,5-bis(isonicotinamido)benzoate. Journal of Coordination Chemistry, 2009, 62, 2421-2428.	0.8	7
67	Synthesis, structure and fluorescence of novel cadmium(II) and silver(I) complexes with in situ ligand formation of 1-(5-tetrazolyl)-4-(imidazol-1-ylmethyl)benzene. Journal of Solid State Chemistry, 2009, 182, 1417-1423.	1.4	16
68	New metal complexes with 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid: Syntheses, structures, electrochemistry and electrocatalysis. Inorganica Chimica Acta, 2009, 362, 4002-4008.	1.2	23
69	Imidazolate-bridged dicopper(II) and copper(II)–zinc(II) complexes of macrocyclic ligand with methylimidazol pendants: Model study of copper(II)–zinc(II) superoxide dismutase. Journal of Inorganic Biochemistry, 2009, 103, 1156-1161.	1.5	24
70	Syntheses, structures and properties of novel d10 coordination polymers based on 4-[(1H-imidazol-4-yl)methylamino]benzoic acid ligand. Inorganic Chemistry Communication, 2009, 12, 58-61.	1.8	13
71	Three-dimensional fourfold interpenetrated (10,3)-b nickel(II) framework with 5-(isonicotinamido)isophthalate. Inorganic Chemistry Communication, 2009, 12, 530-533.	1.8	23
72	Synthesis and Characterization of 3d-3d Homo- and Heterometallic Coordination Polymers with Mixed Ligands. Crystal Growth and Design, 2009, 9, 5190-5196.	1.4	61

Zнı Su

#	Article	IF	CITATIONS
73	Synthesis, structure and property of cobalt(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoic acid. CrystEngComm, 2009, 11, 873.	1.3	55
74	Metal–organic frameworks with six- and four-fold interpenetration and their photoluminescence and adsorption property. CrystEngComm, 2009, 11, 2728.	1.3	50
75	Synthesis, Crystal Structure, and Photoluminescence of Coordination Polymers with Mixed Ligands and Diverse Topologies. Crystal Growth and Design, 2009, 9, 2801-2811.	1.4	133
76	pH-dependent self-assembly of copper(II) complexes with a new imidazole-containing polyamine ligand: Synthesis, structure and magnetic property. Polyhedron, 2008, 27, 2672-2680.	1.0	27
77	Unprecedented cadmium(II) complex with (44·66) net topology and in situ ligand synthesis. Inorganic Chemistry Communication, 2008, 11, 1227-1230.	1.8	12
78	Anion and Additive Effects on the Structure of Mercury(II) Halides Complexes with Tripodal Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 2695-2700.	0.6	8
79	A New Strategy to Fight Metallodrug Resistance: Mitochondriaâ€Relevant Treatment through Mitophagy to Inhibit Metabolic Adaptations of Cancer Cells. Angewandte Chemie. 0	1.6	2