Shinji Ohta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3036144/publications.pdf

Version: 2024-02-01

112 papers	2,246 citations	26 h-index	276875 41 g-index
125	125	125	2190 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	A Novel Amphibian Hypothalamic Neuropeptide: Isolation, Localization, and Biological Activity. Endocrinology, 2002, 143, 411-419.	2.8	129
2	Endogenous pine wood nematicidal substances in pines, Pinus massoniana, P. strobus and P. palustris. Phytochemistry, 1993, 33, 1395-1401.	2.9	99
3	Isolation and Characterization of a Novel Bioactive Peptide, Carassius RFamide (C-RFa), from the Brain of the Japanese Crucian Carp. Biochemical and Biophysical Research Communications, 1998, 242, 436-440.	2.1	89
4	Sesquiterpene coumarins from the roots of Ferula assa-foetida. Phytochemistry, 2001, 58, 1289-1295.	2.9	88
5	<i>C</i> -Geranylated Chalcones from the Stems of <i>Angelica</i> Superoxide-Scavenging Activity. Journal of Natural Products, 2008, 71, 1308-1310.	3.0	87
6	A Noveld-Amino-Acid-Containing Peptide Isolated fromAplysiaHeart. Biochemical and Biophysical Research Communications, 1997, 240, 354-358.	2.1	67
7	Terpenoid Coumarins of the Genus Ferula. Heterocycles, 2003, 60, 689.	0.7	67
8	High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnology Letters, 2000, 22, 1761-1765.	2.2	63
9	Exiguolide, a new macrolide from the marine sponge Geodia exigua. Tetrahedron Letters, 2006, 47, 1957-1960.	1.4	62
10	Clathrynamides A, B, and C: Novel amides from a marine sponge Clathria sp. That inhibit cell division of fertilized starfish eggs. Tetrahedron Letters, 1993, 34, 5935-5938.	1.4	44
11	Rhopaloic acid A: A novel norsesterterpene from a marine sponge, Rhopaloeides sp., which inhibits gastrulation of starfish embryos. Tetrahedron Letters, 1996, 37, 2265-2266.	1.4	42
12	Ancorinoside A:  A Novel Tetramic Acid Glycoside from the Marine Sponge, Ancorina sp. Which Specifically Inhibits Blastulation of Starfish Embryos. Journal of Organic Chemistry, 1997, 62, 6452-6453.	3.2	41
13	Cembrene Diterpenoids with Ether Linkages from Sarcophyton ehrenbergi: An Anti-Proliferation and Molecular-Docking Assessment. Marine Drugs, 2017, 15, 192.	4.6	37
14	Isojaspisin: A novel styryl sulfate from a marine sponge, Jaspis sp., that inhibits hatching of sea urchin embryos. Tetrahedron Letters, 1994, 35, 4579-4580.	1.4	36
15	Callyspongins A and B:Â Novel Polyacetylene Sulfates from the Marine SpongeCallyspongia truncataThat Inhibit Fertilization of Starfish Gametes. Journal of Natural Products, 1996, 59, 1146-1148.	3.0	36
16	Sesquiterpene lactones from Algerian Artemisia herba-alba. Phytochemistry Letters, 2008, 1, 85-88.	1.2	35
17	Glycinoprenols: novel polyprenols possessing a phytyl residue from the leaves of soybean. Journal of Organic Chemistry, 1989, 54, 3390-3393.	3.2	33
18	The structures of four diarylheptanoid glycosides from the female flowers of Alnus serrulatoides. Journal of the Chemical Society Perkin Transactions 1, 1984, , 1635.	0.9	32

#	Article	IF	CITATIONS
19	Triterpenoids, diarylheptanoids and their glycosides in the flowers of Alnus species. Phytochemistry, 1990, 29, 3611-3614.	2.9	32
20	New Terpenes from the Egyptian Soft Coral Sarcophyton ehrenbergi. Marine Drugs, 2014, 12, 1977-1986.	4.6	32
21	Ferulsinaic acid, a sesquiterpene coumarin with a rare carbon skeleton from Ferula species. Phytochemistry, 2007, 68, 680-686.	2.9	31
22	Piericidins C5 and C6: new 4-pyridinol compounds produced by Streptomyces sp. and Nocardioides sp Bioorganic and Medicinal Chemistry, 2003, 11, 4569-4575.	3.0	30
23	Novel norsesterterpenes, which inhibit gastrulation of the starfish embryo, from the marine sponge Rhopaloeides sp Tetrahedron, 1998, 54, 15607-15612.	1.9	29
24	Biotransformation of phenolic compounds by the cultured cells of Catharanthus roseus. Journal of Molecular Catalysis B: Enzymatic, 2002, 16, 275-281.	1.8	29
25	GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2011, 407, 185-190.	2.1	29
26	Jaspisin, a Novel Styryl Sulfate from the Marine Sponge, <i>Jaspis</i> Species. Bioscience, Biotechnology and Biochemistry, 1994, 58, 1752-1753.	1.3	28
27	Ancorinoside A Mg salt from the marine sponge, Ancorina sp., which specifically inhibits blastulation of starfish embryos. Tetrahedron, 2001, 57, 4699-4703.	1.9	27
28	Structure of a Covalently Cross-Linked Form of Core Histones Present in the Starfish Spermâ€. Biochemistry, 1997, 36, 12071-12079.	2.5	26
29	Bioactive jatrophane diterpenes from Euphorbia guyoniana. Phytochemistry, 2010, 71, 249-253.	2.9	26
30	A Novel Amphibian Hypothalamic Neuropeptide: Isolation, Localization, and Biological Activity. Endocrinology, 2002, 143, 411-419.	2.8	25
31	Hippospongic acid A: An unusual triterpenoic acid from a marine sponge, Hippospongia sp., which inhibits gastrulation of starfish embryos. Tetrahedron Letters, 1996, 37, 7765-7766.	1.4	24
32	Enantioselective total synthesis and absolute stereostructure of hippospongic acid A. Tetrahedron, 2001, 57, 1235-1246.	1.9	23
33	Casbane Diterpenes from Red Sea Coral Sinularia polydactyla. Molecules, 2016, 21, 308.	3.8	23
34	New spirocyclic sesquiterpenes from the marine sponge Geodia exigua. Tetrahedron, 2003, 59, 731-736.	1.9	22
35	Antioxidant hydroxycinnamic acid derivatives isolated from Brazilian bee pollen. Natural Product Research, 2007, 21, 726-732.	1.8	22
36	Micromonospolides A–C, new macrolides from Micromonospora sp Tetrahedron, 2001, 57, 8463-8467.	1.9	21

#	Article	IF	Citations
37	Monoterpene coumarins from Ferula ferulago. Phytochemistry, 2001, 57, 1201-1203.	2.9	19
38	Six novel secodammarane-type triterpenes from male Flowers of Alnus japonica. Phytochemistry, 1988, 27, 2915-2920.	2.9	18
39	Biologically active clerodane-type diterpene glycosides from the root-stalks of Dicranopteris pedata. Phytochemistry, 1997, 46, 839-844.	2.9	18
40	Micromonospolide A, a new macrolide from Micromonospora sp Tetrahedron Letters, 2001, 42, 4179-4181.	1.4	18
41	Ashitabaol A, a new antioxidative sesquiterpenoid from seeds of Angelica keiskei. Tetrahedron Letters, 2010, 51, 3449-3450.	1.4	18
42	Cytotoxicity of abietane diterpenoids from Salvia multicaulis towards multidrug-resistant cancer cells. Fìtoterapìâ, 2018, 130, 54-60.	2.2	18
43	Dorsamin-A's, Glycerolipids Carrying a Dehydrophenylalanine Ester Moiety from the Seed-Eating Larvae of the Bruchid Beetle <i>Bruchidius dorsalis</i> I>. Journal of Natural Products, 2013, 76, 554-558.	3.0	17
44	Cassane diterpenoids from the roots of Caesalpinia decapetala var. japonica and structure revision of caesaljapin. Phytochemistry, 2016, 121, 50-57.	2.9	17
45	Prenylated purine alkaloids from seeds of Gleditsia japonica. Phytochemistry, 2017, 143, 145-150.	2.9	17
46	Exiguamide, a new spirocyclic sesquiterpene from the marine sponge Geodia exigua that inhibits cell fate specification during sea urchin embryogenesis. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3037-3039.	2,2	16
47	Saikachinoside A, a novel 3-prenylated isoguanine glucoside from seeds of Gleditsia japonica. Tetrahedron Letters, 2010, 51, 2099-2101.	1.4	16
48	New cytotoxic halogenated sesquiterpenes from the Egyptian sea hare, Aplysia oculifera. Tetrahedron Letters, 2014, 55, 1711-1714.	1.4	16
49	A C31-secodammarane-type triterpenic acid, 12-deoxy alnustic acid, from the female flowers of alnus pendula. Phytochemistry, 1986, 25, 1243-1244.	2.9	15
50	Locustoside A â€" A new purine alkaloid glucoside from seeds of Gleditsia japonica. Phytochemistry Letters, 2010, 3, 198-200.	1.2	15
51	Comprehensive Screening of Human Genes with Inhibitory Effects on Yeast Growth and Validation of a Yeast Cell-Based System for Screening Chemicals. Journal of Biomolecular Screening, 2010, 15, 368-378.	2.6	15
52	Sarcoehrenbergilides D–F: cytotoxic cembrene diterpenoids from the soft coral <i>Sarcophyton ehrenbergi</i> . RSC Advances, 2019, 9, 27183-27189.	3.6	15
53	Asaroidoxazines from the Roots of Asarum asaroides Induce Apoptosis in Human Neuroblastoma Cells. Journal of Natural Products, 2020, 83, 3050-3057.	3.0	15
54	Glucosylation of benzyl alcohols by the cultured suspension cells of Nicotiana tabacum and Catharanthus roseus. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 67-73.	1.8	14

#	Article	IF	CITATIONS
55	Cyclooxygenase (COX)-1 and -2 Inhibitory Labdane Diterpenes from <i>Crassocephalum mannii</i> Journal of Natural Products, 2008, 71, 1070-1073.	3.0	13
56	The structures of four novel C31-secodammarane-type triterpenoid saponins from the female flowers of Alnus serrulatoides. Journal of the Chemical Society Perkin Transactions 1, 1982, , 1399.	0.9	12
57	Facile and stereospecific synthesis of (S)- and (R)-[2-2H]isopentenyl pyrophosphates. Journal of the Chemical Society Perkin Transactions 1, 1987, , 2845.	0.9	12
58	A Novel Antimicrobial Substance from a Strain of the Bacterium, <i>Vibrio</i> SP. Natural Product Research, 1994, 4, 309-312.	0.4	12
59	Arachisprenols: Polyprenols possessing a geranyl residue from Arachis hypogaea. Phytochemistry, 1997, 46, 715-720.	2.9	12
60	Revised structure, synthesis and absolute configuration of hippospongic acid A. Tetrahedron Letters, 1998, 39, 7745-7746.	1.4	12
61	d-Pinitol in Fabaceae: an Oviposition Stimulant for the Common Grass Yellow Butterfly, Eurema mandarina. Journal of Chemical Ecology, 2016, 42, 1122-1129.	1.8	12
62	Triterpenoids from the female and male flowers of Alnus sieboldiana. Phytochemistry, 1985, 24, 2744-2745.	2.9	11
63	A New $\hat{l}\pm,\hat{l}^2,\hat{l}^3,\hat{l}$ -Unsaturated carboxylic acid and three new cyclic peroxides from the marine sponge, Monotria japonica, which selectively lyse starfish oocytes without affecting nuclear morphology. Bioorganic and Medicinal Chemistry, 2003, 11, 1715-1721.	3.0	11
64	A Novel Human Dynactin-Associated Protein, dynAP, Promotes Activation of Akt, and Ergosterol-Related Compounds Induce dynAP-Dependent Apoptosis of Human Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 2934-2942.	4.1	11
65	New Prenylated <i>ortho</i> â€Dihydroxycoumarins from the Fruits of <i>Ficus nipponica</i> and Biodiversity, 2017, 14, e1700196.	2.1	11
66	An X-Ray Crystallographic Study on the Absolute Configuration of Dihydroyashabushiketol and the Solvent-dependence of Its Optical Rotation. Bulletin of the Chemical Society of Japan, 1983, 56, 3353-3357.	3.2	10
67	C31,-secodammarane-type triterpenoid saponins from the male flowers of Alnus pendula. Phytochemistry, 1984, 23, 1297-1299.	2.9	10
68	Diastereoselective Formation of Disaccharides from (RS)-1-Phenylethanol by Cultured Cells of Catharanthus roseus. Bulletin of the Chemical Society of Japan, 2001, 74, 539-542.	3.2	10
69	Inhibition of Chromosome Separation in Fertilized Starfish Eggs by Kalihinol F, a Topoisomerase I Inhibitor Obtained from a Marine Sponge. Bioscience, Biotechnology and Biochemistry, 2003, 67, 2365-2372.	1.3	10
70	Petroacetylene, a new polyacetylene from the marine sponge Petrosiasolida that inhibits blastulation of starfish embryos. Natural Product Research, 2013, 27, 1842-1847.	1.8	10
71	Biosynthetic generation of the species-specific chirality of limonene in Mentha spicata and Citrus unshiu. Journal of the Chemical Society Chemical Communications, 1993, , 1370.	2.0	9
72	Two New Analogues of the Cytotoxic Substance BE-52211 fromStreptomycessp Journal of Natural Products, 2004, 67, 85-87.	3.0	9

#	Article	IF	CITATIONS
73	Sylviside, a Diterpene Glucoside Derivative fromGnaphaliumsylvaticum⊥. Journal of Natural Products, 2006, 69, 394-396.	3.0	9
74	Hydroxylated furanoditerpenoids from pupal cases produced by the bruchid beetle Sulcobruchus sauteri inside the seeds of Caesalpinia decapetala. Phytochemistry, 2018, 156, 151-158.	2.9	9
75	Oxygenated Cembrene Diterpenes from Sarcophyton convolutum: Cytotoxic Sarcoconvolutum A–E. Marine Drugs, 2021, 19, 519.	4.6	9
76	Production of an Antibacterial Agent, <i>O</i> -Aminophenol, by a Bacterium Isolated from the Marine Sponge, <i>Adocia</i> sp Fisheries Science, 1994, 60, 559-562.	1.6	8
77	Anti-Fertilization Activity of a Spirocyclic Sesquiterpene Isocyanide Isolated from the Marine Sponge <i>Geodia exigua</i> and Related Compounds. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1764-1771.	1.3	8
78	Caesaljaponins A and B: New Cassaneâ€Type Furanoditerpenoids from the Seeds of <i>Caesalpinia decapetala</i> var. <i>japonica</i> Helvetica Chimica Acta, 2015, 98, 336-342.	1.6	8
79	Synthesis of 4- and 5-regioselectively deuteriated geranyl diphosphates. Journal of the Chemical Society Perkin Transactions 1, 1989, , 1811.	0.9	7
80	An anomaly in the biosynthesis of (E,E)-farnesol by the crude enzyme system of Pisum sativum. Phytochemistry, 1990, 29, 3467-3472.	2.9	7
81	Glyceroglycolipids preventing tert-butylhydroperoxide-induced cell death from Microbacterium sp. and Corynebacterium aquaticum strains. Journal of Bioscience and Bioengineering, 2000, 89, 170-175.	2.2	7
82	Isolation and identification of cell hypertrophy-inducing substances in the gall-forming aphid Colopha moriokaensis. Insect Biochemistry and Molecular Biology, 2000, 30, 947-952.	2.7	7
83	Carotane sesquiterpenes from <i>Ferula vesceritensis</i> ibinding inhibitors. RSC Advances, 2020, 10, 34541-34548.	3.6	7
84	Malformation of Immature Starfish Oocytes by Theonellapeptolide Ie, a Tridecapeptide Lactone from a Marine SpongePetrosiaSpecies, through Disturbance of Cortical F-Actin Distribution. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1908-1915.	1.3	6
85	Bromotheoynic acid, a brominated acetylenic acid from the marine sponge <i>Theonella swinhoei </i> Natural Product Research, 2013, 27, 117-122.	1.8	6
86	Structure Revision of Caesalpinistas A and B and Isolation of a New Furanoditerpenoid from the Cotyledons of <i>Caesalpinia decapetala</i> var. <i>japonica</i> Helvetica Chimica Acta, 2016, 99, 133-137.	1.6	6
87	4′,6â€dimethoxyisoflavoneâ€7â€ <i>O</i> àêβâ€Dâ€glucopyranoside (wistin) is a peroxisome proliferatorâ€act receptor γ (PPARγ) agonist that stimulates adipocyte differentiation. Animal Science Journal, 2016, 87, 1347-1351.	tivated 1.4	6
88	Volatile terpenoids from male wings lacking scent scales in Anthocharis scolymus (Lepidoptera:) Tj ETQq0 0 0 rgB1	Γ/Qverloc	k ₆ 10 Tf 50 14
89	Ficusnotins A–F: Rare diarylbutanoids from the leaves of Ficus nota. Phytochemistry, 2017, 141, 98-104.	2.9	6
90	Paralemnolins X and Y, New Antimicrobial Sesquiterpenoids from the Soft Coral Paralemnalia thyrsoide. Antibiotics, 2021, 10, 1158.	3.7	6

#	Article	IF	CITATIONS
91	13C NMR detection of delocalized C10-allylic cation in the biosynthesis of farnesyl diphosphate. Journal of the Chemical Society Chemical Communications, 1994, , 1057.	2.0	5
92	4′,6-Dimethoxyisoflavone-7-O-β-d-glucopyranoside (wistin) is a peroxisome proliferator-activated receptor α (PPARα) agonist in mouse hepatocytes. Molecular and Cellular Biochemistry, 2018, 446, 35-41.	3.1	5
93	Janohigenins: Long-chain anacardic acid derivatives with neuroprotective activity from Ophiopogon japonicus seeds. Phytochemistry, 2021, 191, 112904.	2.9	5
94	Unusual Chain Elongation at the Reversed Face in the Biosynthesis of (E,E)-Farnesol with the Enzyme System of Pisum sativum. Chemistry Letters, 1987, 16, 497-500.	1.3	4
95	JBIR-14, a highly oxygenated ergostane, from Isaria sp. NBRC 104353. Journal of Antibiotics, 2010, 63, 139-141.	2.0	4
96	A cyanogenic glucoside of Trifolium repens deters oviposition by the common grass yellow Eurema mandarina. Physiological Entomology, 2019, 44, 222-229.	1.5	4
97	Norbisabolane and bisabolane sesquiterpenoids from the seeds of Angelica keiskei. Phytochemistry Letters, 2019, 33, 94-101.	1.2	4
98	The Role of N,N,N-Trimethylglycine in Oviposition of Eurema mandarina on Albizia julibrissin. Journal of Chemical Ecology, 2019, 45, 371-377.	1.8	4
99	Absence of cuticular alkenes allows lycaenid larvae to avoid predation by <scp><i>Formica japonica</i></scp> ants. Entomological Science, 2019, 22, 126-136.	0.6	4
100	Very highly fluorescent product from 2′-deoxyguanosine with t-butanol in aqueous solution by exposure to cobalt-60 gamma-rays. Radiation Physics and Chemistry, 1995, 45, 207-216.	2.8	3
101	Sulfated Purine Alkaloid Glycosides from the Pupal Case Built by the Bruchid Beetle <i>Bruchidius dorsalis</i> Inside the Seed of <i>Gleditsia japonica</i> Inside the Seed of <i>Gleditsia japonica</i> Inside the Seed of <i>Inside the</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.1	3
102	Rare sulfated purine alkaloid glycosides from Bruchidius dorsalis pupal case. Phytochemistry Letters, 2020, 35, 10-14.	1.2	3
103	Two new C11-terpenes with an octahydrobenzofuran skeleton isolated from the leaves of Ficus nota. Phytochemistry Letters, 2017, 19, 237-240.	1.2	2
104	Stereospecific regulation of in vivo prenyl chain elongation. Prenylation in higher plants Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1988, 46, 12-21.	0.1	2
105	Sex pheromones from male forewings of the Common Grass Yellow Eurema mandarina. Journal of Chemical Ecology, 2022, 48, 518-530.	1.8	2
106	An efficient method for following the enzymic reactions involved in camphor biosynthesis in cinnamomum camphora by use of GC-MS and regiospecifically deuteriated substrate. Journal of Labelled Compounds and Radiopharmaceuticals, 1992, 31, 397-402.	1.0	1
107	Oxygenated sesquiterpenoids characteristic of a male lycaenid butterfly Lycaeides argyrognomon praeterinsularis. Biochemical Systematics and Ecology, 2018, 81, 109-111.	1.3	1
108	HPLC profiles and spectroscopic data of cassane-type furanoditerpenoids. Data in Brief, 2018, 21, 1076-1088.	1.0	1

Shinji Ohta

#	Article	IF	CITATIONS
109	Antibacterial, Anti-Inflammatory, and Antidiabetic Studies of the Amines Isolated from the Philippine Marine Sponge Desmacella sp. Current Bioactive Compounds, 2023, 19, 52-61.	0.5	1
110	NMR and ESIMS data for bisabolane-type sesquiterpenoids. Data in Brief, 2019, 27, 104780.	1.0	0
111	Nuclear magnetic resonance spectroscopy and mass spectrometry data for sulfated isoguanine glycosides. Data in Brief, 2020, 28, 105032.	1.0	O
112	Electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy data for anacardic acid derivatives. Data in Brief, 2022, 41, 107889.	1.0	0