
Ashutosh Tiwari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/303612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergence of microfluidics for next generation biomedical devices. Biosensors and Bioelectronics: X, 2022, 10, 100106.	1.7	32
2	Recent trends in computational tools and data-driven modeling for advanced materials. Materials Advances, 2022, 3, 4069-4087.	5.4	17
3	Priority of Materials Research for Reaching Climate Neutrality Goals. Advanced Materials Letters, 2022, 13, 2201-1683.	0.6	4
4	Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production. Renewable and Sustainable Energy Reviews, 2022, 161, 112393.	16.4	57
5	Progress in paper-based analytical devices for climate neutral biosensing. Biosensors and Bioelectronics: X, 2022, 11, 100166.	1.7	2
6	Advances in Organ-on-a-Chip Materials and Devices. ACS Applied Bio Materials, 2022, 5, 3576-3607.	4.6	27
7	Advanced Materials And Convergence Technologies For Sustainable COVID-19 Healthcare Model. Advanced Materials Letters, 2021, 12, 21011589-21011589.	0.6	2
8	Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals. Advanced Materials Letters, 2021, 12, 1-6.	0.6	9
9	The healthier healthcare management models for COVID-19. Journal of Infection and Public Health, 2021, 14, 927-937.	4.1	12
10	Advancing Materials Towards Climate Neutrality By 2050. Advanced Materials Letters, 2021, 12, 21081650-21081650.	0.6	3
11	Sustainable chemical preventive models in COVID-19: Understanding, innovation, adaptations, and impact. Journal of the Indian Chemical Society, 2021, 98, 100164.	2.8	7
12	The Emerging Global Trends in Hydrogen Energy Research for Achieving the Net Zero Goals. Advanced Materials Letters, 2021, 12, 1-5.	0.6	14
13	Nanohybrid-based immunosensor prepared for Helicobacter pylori BabA antigen detection through immobilized antibody assembly with @ Pdnano/rGO/PEDOT sensing platform. Scientific Reports, 2020, 10, 21217.	3.3	31
14	Current Scenario of Coronavirus Pandemic. Advanced Materials Letters, 2020, 11, 1-8.	0.6	5
15	Researcher of the Year 2020: Professor Herbert Gleiter, Germany. Advanced Materials Letters, 2020, 11, 1-8.	0.6	0
16	The Journey of a Decade to Advancing Materials. Advanced Materials Letters, 2020, 11, 1-6.	0.6	0
17	Advanced Materials Congress Celebrating 10th Years of Establishment. Advanced Materials Letters, 2020, 11, 1-4.	0.6	0
18	Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials Â. Advanced Materials Letters, 2020, 11, 1-2.	0.6	0

#	Article	IF	CITATIONS
19	Electrochemical detection of DNA mismatches using a branch-shaped hierarchical SWNT-DNA nano-hybrid bioelectrode. Materials Science and Engineering C, 2019, 104, 109886.	7.3	10
20	Computational studies on the molecular insights of aptamer induced poly(N-isopropylacrylamide)-graft-graphene oxide for on/off- switchable whole-cell cancer diagnostics. Scientific Reports, 2019, 9, 7873.	3.3	20
21	Synergistic effect of 2D material coated Pt nanoparticles with PEDOT polymer on electrode surface interface for a sensitive label free Helicobacter pylori CagA(Ag-Ab) immunosensing. Materials Science and Engineering C, 2019, 103, 109733.	7.3	28
22	Current Scenario Of Healthcare. Advanced Materials Letters, 2019, 10, 1-1.	0.6	1
23	Impact of digital transformation for Mass healthcare. Advanced Materials Letters, 2019, 10, 79-79.	0.6	1
24	Intelligent healthcare for future medicine. Advanced Materials Letters, 2019, 10, 151-151.	0.6	4
25	Tech-footprints for virtual medicine. Advanced Materials Letters, 2019, 10, 230-230.	0.6	0
26	Healthcare informatics driven nanotechnology. Advanced Materials Letters, 2019, 10, 610-610.	0.6	2
27	Graphene nanoplatelets-silver nanorods-polymer based in-situ hybrid electrode for electroanalysis of dopamine and ascorbic acid in biological samples. Applied Surface Science, 2018, 449, 558-566.	6.1	32
28	Researcher of the year 2018 - Professor T. Venkatesan: an unified journey of high-throughput nanoscale technologyÂ. Advanced Materials Letters, 2018, 9, 831-835.	0.6	0
29	Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosensors and Bioelectronics, 2017, 89, 545-550.	10.1	180
30	Introduction of selectivity and specificity to graphene using an inimitable combination of molecular imprinting and nanotechnology. Biosensors and Bioelectronics, 2017, 89, 234-248.	10.1	48
31	2-Dimensional graphene as a route for emergence of additional dimension nanomaterials. Biosensors and Bioelectronics, 2017, 89, 8-27.	10.1	31
32	Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing. Biosensors and Bioelectronics, 2017, 89, 496-504.	10.1	27
33	Stimuli-enabled zipper-like graphene interface for auto-switchable bioelectronics. Biosensors and Bioelectronics, 2017, 89, 305-311.	10.1	18
34	Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor. Nano Energy, 2017, 34, 570-577.	16.0	67
35	Electrocatalytic biofuel cell based on highly efficient metal-polymer nano-architectured bioelectrodes. Nano Energy, 2017, 39, 601-607.	16.0	40
36	On/off-switchable LSPR nano-immunoassay for troponin-T. Scientific Reports, 2017, 7, 44027.	3.3	36

#	Article	IF	CITATIONS
37	Optical fibre based non-enzymatic glucose sensing over Cu2+-doped polyaniline hybrid matrix. Sensors and Actuators B: Chemical, 2017, 242, 522-528.	7.8	25
38	Recent advances in 2D bioelectronics. Biosensors and Bioelectronics, 2017, 89, 1-7.	10.1	12
39	Molecular Bioelectronics. The 19 Years of Progress. Second Edition. By Claudio Nicolini. World Scientific, 2016. Pp. 336. Price GBP 108.00. ISBN 9789814725842 Journal of Applied Crystallography, 2017, 50, 1244-1244.	4.5	0
40	Programmable bioelectronics in a stimuli-encoded 3D graphene interface. Nanoscale, 2016, 8, 9976-9981.	5.6	21
41	Polymeric Micellar Structures for Biosensor Technology. Advances in Biomembranes and Lipid Self-Assembly, 2016, 24, 143-161.	0.6	38
42	Inflammation-sensitive in situ smart scaffolding for regenerative medicine. Nanoscale, 2016, 8, 17213-17222.	5.6	17
43	Lightâ€Triggered Switchable Graphene–Polymer Hybrid Bioelectronics. Advanced Materials Interfaces, 2016, 3, 1500353.	3.7	15
44	Study The Influence Of Different Mol% BLTMNZ Doping On KNLN Ceramics By Using The XRD And Impedance Spectroscopy. Advanced Materials Letters, 2016, 7, 29-35.	0.6	3
45	An Era Of High-tech Materials. Advanced Materials Letters, 2016, 7, 1-2.	0.6	Ο
46	Biosensors And Bioelectronics Symposium (BBS - 2016), SwedenÂ. Advanced Materials Letters, 2016, 7, 89-89.	0.6	0
47	Symposium On Smart Energy Technologies Â(SET-2016), Stockholm Â. Advanced Materials Letters, 2016, 7, 175-175.	0.6	Ο
48	American Advanced Materials Congress (AAMC - 2016), Miami, USA. Advanced Materials Letters, 2016, 7, 253-253.	0.6	0
49	Special Issue In Celebration Of Prof. Ingemar Lundström's 75th Birthday. Advanced Materials Letters, 2016, 7, 337-338.	0.6	Ο
50	Asian Advanced Materials Congress (ASAMC -2017), Singapore. Advanced Materials Letters, 2016, 7, 501-501.	0.6	0
51	Advanced Materials Series, WILEY-ScrivenerÂ. Advanced Materials Letters, 2016, 7, 599-599.	0.6	Ο
52	Internationanl Conference On Nanomaterials And Nanotechnology (ICNANO-2016), India. Advanced Materials Letters, 2016, 7, 683-683.	0.6	0
53	Asian Graphene Forum (AGF - 2017), Singapore. Advanced Materials Letters, 2016, 7, 770-770.	0.6	0
54	Advanced Nanomaterials - Recent Developments. Advanced Materials Letters, 2016, 7, 851-851.	0.6	0

#	Article	IF	CITATIONS
55	Advanced Materials Series, Wiley-Scrivener. Advanced Materials Letters, 2016, 7, 945-945.	0.6	Ο
56	On/off-switchable anti-neoplastic nanoarchitecture. Scientific Reports, 2015, 5, 14571.	3.3	13
57	Studies on an on/off-switchable immunosensor for troponin T. Biosensors and Bioelectronics, 2015, 73, 100-107.	10.1	22
58	Switchable bioelectronics on graphene interface (Presentation Recording). Proceedings of SPIE, 2015, ,	0.8	1
59	A potential-gated molecularly imprinted smart electrode for nicotinamide analysis. RSC Advances, 2015, 5, 35089-35096.	3.6	11
60	Band edge engineering of TiO ₂ @DNA nanohybrids and implications for capacitive energy storage devices. Nanoscale, 2015, 7, 10438-10448.	5.6	37
61	Switchable Bioelectrocatalysis Controlled by Dual Stimuli-Responsive Polymeric Interface. ACS Applied Materials & Interfaces, 2015, 7, 23837-23847.	8.0	32
62	Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses. ACS Applied Materials & Interfaces, 2015, 7, 23848-23856.	8.0	14
63	Cholesterol Oxidase Functionalised Polyaniline/Carbon Nanotube Hybrids for an Amperometric Biosensor. Journal of Nanoscience and Nanotechnology, 2015, 15, 3373-3377.	0.9	10
64	pH-induced on/off-switchable graphene bioelectronics. Journal of Materials Chemistry B, 2015, 3, 7434-7439.	5.8	33
65	Keys And Regulators Of Nanoscale TheranosticsÂ. Advanced Materials Letters, 2015, 6, 87-98.	0.6	4
66	Cassia Grandis Seed Gum-graft-poly(acrylamide)-silica Hybrid: An Excellent Cadmium (II) Adsorbent. Advanced Materials Letters, 2015, 6, 19-26.	0.6	14
67	Advanced Materials World Congress (AMWC) -2015, Sweden. Advanced Materials Letters, 2015, 6, 1-1.	0.6	Ο
68	Advanced Materials World Congress (AMWC) -2015, Sweden. Advanced Materials Letters, 2015, 6, 1-1.	0.6	0
69	Advanced Materials World Congress, Sweden. Advanced Materials Letters, 2015, 6, 86-86.	0.6	Ο
70	Advanced Materials World Congress, Sweden. Advanced Materials Letters, 2015, 6, 186-186.	0.6	0
71	Advanced Materials World Congress, Sweden. Advanced Materials Letters, 2015, 6, 278-278.	0.6	0
72	Advanced Materials World Congress, Sweden. Advanced Materials Letters, 2015, 6, 370-370.	0.6	0

#	Article	IF	CITATIONS
73	Special Issue In Celebration Of Prof. Anthony PF Turner's 65th Birthday. Advanced Materials Letters, 2015, 6, 452-452.	0.6	0
74	International Conference On Materials Science & Technology (ICMTech - 2016), India. Advanced Materials Letters, 2015, 6, 847-847.	0.6	0
75	European Advanced Materials Congress Â(EAMC - 2016), Sweden Â. Advanced Materials Letters, 2015, 6, 935-935.	0.6	0
76	Global Graphene Forum (GGF - 2016), Sweden. Advanced Materials Letters, 2015, 6, 1025-1025.	0.6	0
77	On/Offâ€Switchable Zipperâ€Like Bioelectronics on a Graphene Interface. Advanced Materials, 2014, 26, 482-486.	21.0	68
78	Electrochemical detection of DNA damage through visible-light-induced ROS using mesoporous TiO2 microbeads. Electrochemistry Communications, 2014, 40, 84-87.	4.7	17
79	Electrochemical evaluation of troponin T imprinted polymer receptor. Biosensors and Bioelectronics, 2014, 59, 160-165.	10.1	75
80	Ultrasensitive Detection of Human Liver Hepatocellular Carcinoma Cells Using a Label-Free Aptasensor. Analytical Chemistry, 2014, 86, 4956-4960.	6.5	112
81	Structural, dielectric and magnetic properties of Gd and Dy doped (Bi 0.95 RE 0.05)(Fe 0.95 Mn 0.05)O 3 ceramics synthesized by SSR method. Solid State Communications, 2014, 197, 1-5.	1.9	3
82	Twoâ€Dimensional Goldâ€Tungsten Disulphide Bioâ€Interface for Highâ€Throughput Electrocatalytic Nanoâ€Bioreactors. Advanced Materials Interfaces, 2014, 1, 1400136.	3.7	18
83	MRIâ€Visual Order–Disorder Micellar Nanostructures for Smart Cancer Theranostics. Advanced Healthcare Materials, 2014, 3, 526-535.	7.6	36
84	Self-Reporting Micellar Polymer Nanostructures for Optical Urea Biosensing. Industrial & Engineering Chemistry Research, 2014, 53, 8509-8514.	3.7	24
85	Study Of Ca Doping On A- Site On The Structural And Physical Properties Of BLTMNZ Ceramics. Advanced Materials Letters, 2014, 5, 255-259.	0.6	1
86	Indian Materials Congress®. Advanced Materials Letters, 2014, 5, 1-1.	0.6	1
87	International Conference On Smart Materials And Surfaces (SMS), Bangkok. Advanced Materials Letters, 2014, 5, 59-60.	0.6	0
88	International Conference On Smart Materials And Surfaces (SMS), Bangkok. Advanced Materials Letters, 2014, 5, 111-112.	0.6	0
89	International Conference On Smart Materials And Surfaces (SMS), Bangkok. Advanced Materials Letters, 2014, 5, 234-235.	0.6	0
90	International Conference On Smart Materials And Surfaces (SMS), Bangkok. Advanced Materials Letters, 2014, 5, 297-298.	0.6	0

#	Article	lF	CITATIONS
91	Advanced Materials World Congress, Sweden. Advanced Materials Letters, 2014, 5, 366-366.	0.6	Ο
92	Advanced Materials World Congress (AMWC) - 2015, Sweden Â. Advanced Materials Letters, 2014, 5, 485-485.	0.6	0
93	Advanced Materials World Congress (AMWC) -2015, Sweden. Advanced Materials Letters, 2014, 5, 682-682.	0.6	0
94	ÂAdvanced Materials World Congress, Sweden. Advanced Materials Letters, 2014, 6, 370-370.	0.6	0
95	Computer simulation of the in vitro and in vivo anti-inflammatory activities of dihydropyrimidines acid derivatives through the inhibition of cyclooxygenase-2. Medicinal Chemistry Research, 2013, 22, 2493-2504.	2.4	3
96	An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosensors and Bioelectronics, 2013, 50, 492-498.	10.1	113
97	Influence of poly(<i>n</i> â€isopropylacrylamide)–CNT–polyaniline threeâ€dimensional electrospun microfabric scaffolds on cell growth and viability. Biopolymers, 2013, 99, 334-341.	2.4	39
98	A high-performance glucose biosensor using covalently immobilised glucose oxidase on a poly(2,6-diaminopyridine)/carbon nanotube electrode. Talanta, 2013, 116, 801-808.	5.5	36
99	On/off-switchable electrochemical folic acid sensor based on molecularly imprinted polymer electrode. Electrochemistry Communications, 2013, 36, 92-95.	4.7	49
100	Template-directed hierarchical self-assembly of graphene based hybrid structure for electrochemical biosensing. Biosensors and Bioelectronics, 2013, 49, 53-62.	10.1	103
101	Indian Materials Congress®. Advanced Materials Letters, 2013, 4, 797-797.	0.6	1
102	Preparation And Characterization Of Cellulose Derived From Rice Husk For Drug Delivery. Advanced Materials Letters, 2013, 4, 714-719.	0.6	27
103	Spectroscopic And Morphological Analysis Of Graphene Vinylester Nanocomposites. Advanced Materials Letters, 2013, 4, 656-661.	0.6	20
104	State-of-the-art Of Stimuli-responsive Materials. Advanced Materials Letters, 2013, 4, 507-507.	0.6	4
105	Impact Of Nanotoxicology Towards Technologists To End Users. Advanced Materials Letters, 2013, 4, 591-597.	0.6	1
106	Editorial 'ICNANO 2011' Special Issue Part-2. Advanced Materials Letters, 2013, 4, 1-1.	0.6	0
107	Supervision of doctoral student by public-private sectors partnership: a Special focus on healthcare nanotechnologyÂ. Advanced Materials Letters, 2013, 4, 106-107.	0.6	1
108	Advanced Materials World Congress (AMWC). Advanced Materials Letters, 2013, 4, 174-174.	0.6	0

#	Article	IF	CITATIONS
109	Advanced Materials World Congress (AMWC)Â. Advanced Materials Letters, 2013, 4, 251-251.	0.6	0
110	Advanced Materials World Congress (AMWC). Advanced Materials Letters, 2013, 4, 327-327.	0.6	0
111	Advanced Materials World Congress, Turkey. Advanced Materials Letters, 2013, 4, 655-655.	0.6	0
112	Indian Materials Congress® (IMC). Advanced Materials Letters, 2013, 4, 875-875.	0.6	0
113	Fabrication Of Electro-chemical Humidity Sensor Based On Zinc Oxide/polyaniline Nanocomposite. Advanced Materials Letters, 2012, 3, 421-425.	0.6	39
114	Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta, 2012, 99, 283-287.	5.5	92
115	Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture. International Journal of Biological Macromolecules, 2012, 51, 627-631.	7.5	88
116	Transient charge-masking effect of applied voltage on electrospinning of pure chitosan nanofibers from aqueous solutions. Science and Technology of Advanced Materials, 2012, 13, 015003.	6.1	39
117	Spectral and in vitro antimicrobial properties of 2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid transition metal complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 93, 348-353.	3.9	10
118	Intelligent Nanomaterials For Prospective Nanotechnology. Advanced Materials Letters, 2012, 3, 1-1.	0.6	9
119	Fabrication Of Ultra-sensitive Optical Fiber Based Humidity Sensor Using TiO2Âthin Film. Advanced Materials Letters, 2012, 3, 365-370.	0.6	25
120	â€~On/off'-switchable catalysis by a smart enzyme-like imprinted polymer. Journal of Catalysis, 2011, 278, 173-180.	6.2	57
121	An ultra sensitive saccharides detection assay using carboxyl functionalized chitosan containing Gd ₂ O ₃ : Eu ³⁺ nanoparticles probe. Analytical Methods, 2011, 3, 217-226.	2.7	23
122	lon Sequestration, Solvent Extraction and Antimicrobial Behavior of Quinoline Functionalized Chitosan. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 118-127.	3.7	3
123	Silver/Polyaniline Nanocomposite for the Electrocatalytic Hydrazine Oxidation. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 788-792.	3.7	35
124	Frontiers In Bio-nanocomposites. Advanced Materials Letters, 2011, 2, 377-377.	0.6	3
125	Dedication And Prominence: 31 Years In Biosensors And Bioelectronics Dedicated To Professor Anthony P.F. Turner†Âs 61st Birthday. Advanced Materials Letters, 2011, 2, 84-89.	0.6	0
126	Carboxymethyl Chitosan And Its Applications. Advanced Materials Letters, 2010, 1, 11-33.	0.6	406

#	Article	IF	CITATIONS
127	Vacuum-Deposited Thin Film of Aniline–Formaldehyde Condensate/WO3•nH2O Nanocomposite for NO2 Gas Sensor. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 380-386.	3.7	19
128	Aluminaâ€supported microwave synthesis of <i>Cassia marginata</i> seed gumâ€ <i>graft</i> â€polyacrylamide. Journal of Applied Polymer Science, 2010, 117, 3630-3638.	2.6	7
129	Novel chitosan/gold-MPA nanocomposite for sequence-specific oligonucleotide detection. Carbohydrate Polymers, 2010, 82, 189-194.	10.2	31
130	A Temperatureâ€Responsive Nanoreactor. Small, 2010, 6, 2453-2459.	10.0	40
131	Nanofibrous polyaniline thin film prepared by plasmaâ€induced polymerization technique for detection of NO ₂ gas. Polymers for Advanced Technologies, 2010, 21, 615-620.	3.2	64
132	Isoniazid-induced apoptosis in HepG2 cells: Generation of oxidative stress and Bcl-2 down-regulation. Toxicology Mechanisms and Methods, 2010, 20, 242-251.	2.7	35
133	An Amphiphilic Nanocarrier Based on Guar Gum-graft-Poly(ε-caprolactone) for Potential Drug-Delivery Applications. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 937-949.	3.5	50
134	Therapeutic effect of centchroman alone and in combination with glycine soya on 7,12-dimethylbenz[α]anthracene-induced breast tumor in rat. Food and Chemical Toxicology, 2010, 48, 1587-1591.	3.6	13
135	An enzyme-free highly glucose-specific assay using self-assembled aminobenzene boronic acid upon polyelectrolytes electrospun nanofibers-mat. Talanta, 2010, 82, 1725-1732.	5.5	45
136	Synthesis And Characterization Of Highly Crystalline Polyaniline Film Promising For Humid Sensor. Advanced Materials Letters, 2010, 1, 129-134.	0.6	67
137	A PH-responsive, Low Crosslinked, Molecularly Imprinted Insulin Delivery System. Advanced Materials Letters, 2010, 1, 4-10.	0.6	26
138	Professor Anthony P. F. Turner: An Innovative Educator And Pioneer Of Biosensors In The 21st Century (On His 60th Birth Anniversary). Advanced Materials Letters, 2010, 1, 2-3.	0.6	2
139	Spatially Controlled Cell Growth Using Patterned Biomaterials. Advanced Materials Letters, 2010, 1, 179-187.	0.6	19
140	International Conference On Smart Materials And Surfaces (SMS), Bangkok. Advanced Materials Letters, 2010, 5, 161-162.	0.6	0
141	Advanced Materials World Congress (AMWC) -2015, Sweden. Advanced Materials Letters, 2010, 5, 611-611.	0.6	0
142	Biodegradable hydrogels based on novel photopolymerizable guar gum–methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Acta Biomaterialia, 2009, 5, 3441-3452.	8.3	74
143	A Novel Nanocomposite Matrix Based on Silylated Chitosan and Multiwall Carban Nanotubes for the Immobilization of Urease. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 361-366.	3.7	18
144	Fabrication of biodegradable poly(trimethylene carbonate) networks for potential tissue engineering scaffold applications. Polymers for Advanced Technologies, 2009, 20, 742-747.	3.2	16

#	Article	IF	CITATIONS
145	Multi-walled carbon nanotubes/sol–gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sensors and Actuators B: Chemical, 2009, 137, 727-735.	7.8	121
146	Vacuum-Deposited Poly(o-phenylenediamine)/WO3•nH2O Nanocomposite Thin Film for NO2 Gas Sensor. Polymer Journal, 2009, 41, 726-732.	2.7	14
147	Electrochemical detection of a breast cancer susceptible gene using cDNA immobilized chitosan-co-polyaniline electrode. Talanta, 2009, 77, 1217-1222.	5.5	72
148	An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta, 2009, 78, 1401-1407.	5.5	94
149	Exploring fiber optic approach to sense humid environment over nano-crystalline zinc oxide film. Talanta, 2009, 80, 565-571.	5.5	39
150	Structure elucidation and properties of a non-ionic galactomannan derived from the Cassia pleurocarpa seeds. International Journal of Biological Macromolecules, 2009, 44, 9-13.	7.5	36
151	Hydrolytic fragmentation of seed gums under microwave irradiation. International Journal of Biological Macromolecules, 2009, 44, 186-189.	7.5	22
152	Chitosan–SiO2–multiwall carbon nanotubes nanocomposite: A novel matrix for the immobilization of creatine amidinohydrolase. International Journal of Biological Macromolecules, 2009, 44, 408-412.	7.5	33
153	Structural elucidation, modification and characterization of seed gum from Cassia javahikai seeds: A non-traditional source of industrial gums. International Journal of Biological Macromolecules, 2009, 45, 293-297.	7.5	31
154	Chitosan-g-polyaniline: a creatine amidinohydrolase immobilization matrix for creatine biosensor. EXPRESS Polymer Letters, 2009, 3, 553-559.	2.1	51
155	Microwave-accelerated methylation of starch. Carbohydrate Research, 2008, 343, 151-154.	2.3	27
156	Synthesis and characterization of pH switching electrical conducting biopolymer hybrids for sensor applications. Journal of Polymer Research, 2008, 15, 337-342.	2.4	54
157	Synthesis, characterization, and hoping transport properties of HCl doped conducting biopolymerâ€ <i>co</i> â€polyaniline zwitterion hybrids. Polymers for Advanced Technologies, 2008, 19, 909-914.	3.2	43
158	Electrochemical Synthesis of Chitosanâ€ <i>co</i> â€polyaniline/WO ₃ â< <i>n</i> H ₂ O Composite Electrode for Amperometric Detection of NO ₂ Gas. Electroanalysis, 2008, 20, 1775-1781.	2.9	45
159	Electrochemical Study of Chitosan‣iO ₂ â€MWNT Composite Electrodes for the Fabrication of Cholesterol Biosensors. Electroanalysis, 2008, 20, 2119-2126.	2.9	54
160	Synthesis and characterization of biopolymerâ€based electrical conducting graft copolymers. Journal of Applied Polymer Science, 2008, 108, 1169-1177.	2.6	46
161	Ceric ammonium sulfate/sodium disulfite initiated grafting of acrylamide on to <i>Cassia reticulata</i> seed gum. Journal of Applied Polymer Science, 2008, 110, 1477-1484.	2.6	11
162	Microwave-induced synthesis of electrical conducting gum acacia-graft-polyaniline. Carbohydrate Polymers, 2008, 74, 427-434.	10.2	94

#	Article	IF	CITATIONS
163	Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile) under microwave irradiation. EXPRESS Polymer Letters, 2007, 1, 51-58.	2.1	92
164	Gum Arabicâ€Graftâ€Polyaniline: An Electrically Active Redox Biomaterial for Sensor Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 735-745.	2.2	79
165	Synthesis and characterization of electrical conducting chitosan-graft-polyaniline. EXPRESS Polymer Letters, 2007, 1, 308-317.	2.1	99
166	Synthesis and characterization of novel saponified guar-graft-poly(acrylonitrile)/silica nanocomposite materials. Journal of Applied Polymer Science, 2007, 104, 536-544.	2.6	40
167	Microwave accelerated synthesis and characterization of poly(acrylamide). Journal of Applied Polymer Science, 2007, 104, 3702-3707.	2.6	18
168	Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate). Journal of Colloid and Interface Science, 2007, 316, 224-232.	9.4	78
169	Alumina supported synthesis ofCassia marginata gum-g-poly(acrylonitrile) under microwave irradiation. Polymers for Advanced Technologies, 2007, 18, 379-385.	3.2	21
170	Synthesis of electrically active biopolymer–SiO2 nanocomposite aerogel. Materials Letters, 2007, 61, 4587-4590.	2.6	42
171	Microwave-accelerated Synthesis and Characterization of Potato Starch-g-poly(acrylamide). Starch/Staerke, 2006, 58, 536-543.	2.1	98
172	Microwave synthesized chitosan-graft-poly(methylmethacrylate): An efficient Zn2+ ion binder. Carbohydrate Polymers, 2006, 65, 35-41.	10.2	96
173	Microwave-promoted hydrolysis of plant seed gums on alumina support. Carbohydrate Research, 2006, 341, 2270-2274.	2.3	27
174	Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer, 2006, 47, 254-260.	3.8	177
175	Grafting of methylmethacrylate on to the plant seed galactomannans using potassium persulphate/ascorbic acid redox pair. Reactive and Functional Polymers, 2006, 66, 1306-1318.	4.1	43
176	Microwave promoted synthesis of chitosan-graft-poly(acrylonitrile). Journal of Applied Polymer Science, 2005, 95, 820-825.	2.6	98
177	Studies on K2S2O8/ascorbic acid initiated synthesis ofIpomoea dasysperma seed gum-g-poly(acrylonitrile): A potential industrial gum. Journal of Applied Polymer Science, 2005, 98, 1652-1662.	2.6	38
178	Poly(acrylonitrile) GraftedIpomoeaSeed-Gums:Â A Renewable Reservoir to Industrial Gums. Biomacromolecules, 2005, 6, 453-456.	5.4	61
179	Grafting of polyacrylonitrile onto guar gum under microwave irradiation. Journal of Applied Polymer Science, 2004, 92, 1569-1575.	2.6	86
180	Microwave assisted synthesis of Guar-g-polyacrylamide. Carbohydrate Polymers, 2004, 58, 1-6.	10.2	163

#	Article	IF	CITATIONS
181	Microwave promoted methylation of plant polysaccharides. Tetrahedron Letters, 2003, 44, 7295-7297.	1.4	29
182	Synthesis of Chemical Responsive Chitosan–Grafted-Polyaniline Bio-Composite. Advanced Materials Research, 0, 306-307, 82-86.	0.3	20