MirosÅ,awa SÅ,aba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3035862/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipidomic response of the entomopathogenic fungus Beauveria bassiana to pyrethroids. Scientific Reports, 2021, 11, 21319.	3.3	4
2	Biotransformation and detoxification of chloroacetanilide herbicides by Trichoderma spp. with plant growth-promoting activities. Pesticide Biochemistry and Physiology, 2020, 163, 216-226.	3.6	15
3	Assessment of oxidative stress and phospholipids alterations in chloroacetanilides-degrading Trichoderma spp. Ecotoxicology and Environmental Safety, 2019, 184, 109629.	6.0	14
4	Ecotype Variation in Trace Element Content of Hard Tissues in the European Roe Deer (Capreolus) Tj ETQq0 0 0 r	gBT /Overl 4.1	ock 10 Tf 50

5	Age-Related Patterns in Trace Element Content Vary Between Bone and Teeth of the European Roe Deer (Capreolus capreolus). Archives of Environmental Contamination and Toxicology, 2018, 74, 330-338.	4.1	16
6	Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicology and Environmental Safety, 2018, 162, 1-9.	6.0	30
7	2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS ONE, 2018, 13, e0199677.	2.5	42
8	Trichoderma harzianum diminished oxidative stress caused by 2,4- dichlorophenoxyacetic acid (2,4-D) in wheat, with insights from lipidomics. Journal of Plant Physiology, 2018, 229, 158-163.	3.5	18
9	Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. Journal of Hazardous Materials, 2015, 291, 52-64.	12.4	54
10	Efficient alachlor degradation by the filamentous fungus Paecilomyces marquandii with simultaneous oxidative stress reduction. Bioresource Technology, 2015, 197, 404-409.	9.6	28
11	Microbial Decolorization of Triphenylmethane Dyes. Environmental Science and Engineering, 2015, , 169-186.	0.2	5
12	Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans. Environmental Science and Pollution Research, 2014, 21, 4228-4235.	5.3	44
13	Alachlor oxidation by the filamentous fungus Paecilomyces marquandii. Journal of Hazardous		28
	Materials, 2013, 261, 443-450.	12.4	
14	Materials, 2013, 261, 443-450. Nickel-induced changes in carbon metabolism in wheat shoots. Journal of Plant Physiology, 2013, 170, 369-377.	3.5	22
14 15	Materials, 2013, 261, 443-450. Nickel-induced changes in carbon metabolism in wheat shoots. Journal of Plant Physiology, 2013, 170, 369-377. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environmental Science and Pollution Research, 2013, 20, 3423-3434.	12.4 3.5 5.3	22 15
14 15 16	Materials, 2013, 261, 443-450. Nickel-induced changes in carbon metabolism in wheat shoots. Journal of Plant Physiology, 2013, 170, 369-377. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environmental Science and Pollution Research, 2013, 20, 3423-3434. Comparative study of metal induced phospholipid modifications in the heavy metal tolerant filamentous fungus Paecilomyces marquandii and implications for the fungal membrane integrity. Acta Biochimica Polonica, 2013, 60, 695-700.	12.4 3.5 5.3 0.5	22 15 5
14 15 16 17	Materials, 2013, 261, 443-450. Nickel-induced changes in carbon metabolism in wheat shoots. Journal of Plant Physiology, 2013, 170, 369-377. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environmental Science and Pollution Research, 2013, 20, 3423-3434. Comparative study of metal induced phospholipid modifications in the heavy metal tolerant filamentous fungus Paecilomyces marquandii and implications for the fungal membrane integrity. Acta Biochimica Polonica, 2013, 60, 695-700. Efficient Zn2+ and Pb2+ uptake by filamentous fungus Paecilomyces marquandii with engagement of metal hydrocarbonates precipitation. International Biodeterioration and Biodegradation, 2011, 65, 954-960.	12.4 3.5 5.3 0.5 3.9	22 15 5 25

MirosÅ,awa SÅ,aba

#	Article	IF	CITATIONS
19	Action of Tributyltin (TBT) on the Lipid Content and Potassium Retention in the Organotins Degradating Fungus Cunninghamella elegans. Current Microbiology, 2009, 59, 315-320.	2.2	10
20	Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. BioMetals, 2007, 20, 797-805.	4.1	31
21	Kinetic study of the toxicity of zinc and lead ions to the heavy metals accumulating fungus Paecilomyces marquandii. Bioprocess and Biosystems Engineering, 2005, 28, 185-197.	3.4	12
22	Zinc and lead uptake by mycelium and regenerating protoplasts of Verticillium marquandii. World Journal of Microbiology and Biotechnology, 2004, 20, 323-328.	3.6	8
23	Title is missing!. , 2000, 22, 1699-1704.		10