Jerry E Chipuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3035840/publications.pdf Version: 2024-02-01

IFDDV F CHIDIIK

#	Article	IF	CITATIONS
1	A kinetic fluorescence polarization ligand assay for monitoring BAX early activation. Cell Reports Methods, 2022, 2, 100174.	1.4	4
2	PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 2022, 29, 559-576.e7.	5.2	34
3	FLAMBE: A kinetic fluorescence polarization assay to study activation of monomeric BAX. STAR Protocols, 2022, 3, 101252.	0.5	3
4	IFN-γ+ cytotoxic CD4+ T lymphocytes are involved in the pathogenesis of colitis induced by IL-23 and the food colorant Red 40. , 2022, 19, 777-790.		16
5	Mechanistic connections between mitochondrial biology and regulated cell death. Developmental Cell, 2021, 56, 1221-1233.	3.1	25
6	Mitochondrial localization and moderated activity are key to murine erythroid enucleation. Blood Advances, 2021, 5, 2490-2504.	2.5	16
7	T cell–derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death. JCI Insight, 2021, 6, .	2.3	7
8	High-Throughput Cell Death Assays with Single-Cell and Population-Level Analyses Using Real-Time Kinetic Labeling (SPARKL). STAR Protocols, 2020, 1, 100034.	0.5	1
9	Why not add some SPARKL to your life (and death)!?. Molecular and Cellular Oncology, 2020, 7, 1685841.	0.3	0
10	Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness. JCI Insight, 2020, 5, .	2.3	6
11	Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019, 178, 1102-1114.e17.	13.5	254
12	Single-Cell and Population-Level Analyses Using Real-Time Kinetic Labeling Couples Proliferation and Cell Death Mechanisms. Developmental Cell, 2019, 51, 277-291.e4.	3.1	13
13	Think We Understand the Role of DRP1 in Mitochondrial Biology? Zinc Again!. Molecular Cell, 2019, 73, 197-198.	4.5	3
14	Complex I and MDM2: hit me baby one more time. Molecular and Cellular Oncology, 2019, 6, 1607457.	0.3	0
15	Mitochondrial origins of fractional control in regulated cell death. Nature Communications, 2019, 10, 1313.	5.8	30
16	MDM2 Integrates Cellular Respiration and Apoptotic Signaling through NDUFS1 and the Mitochondrial Network. Molecular Cell, 2019, 74, 452-465.e7.	4.5	43
17	Late-onset megaconial myopathy in mice lacking group I Paks. Skeletal Muscle, 2019, 9, 5.	1.9	12
18	MDM2 and mitochondrial function: One complex intersection. Biochemical Pharmacology, 2019, 162, 14-20.	2.0	13

#	Article	IF	CITATIONS
19	Mitochondrial Isolation and Real-Time Monitoring of MOMP. Methods in Molecular Biology, 2019, 1877, 121-130.	0.4	2
20	FBXW 7 regulates a mitochondrial transcription program by modulating MITF. Pigment Cell and Melanoma Research, 2018, 31, 636-640.	1.5	13
21	Dual suppression of inner and outer mitochondrial membrane functions augments apoptotic responses to oncogenic MAPK inhibition. Cell Death and Disease, 2018, 9, 29.	2.7	21
22	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
23	RAF/MEK/extracellular signal–related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. Journal of Experimental Medicine, 2018, 215, 319-336.	4.2	58
24	Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation. Diabetes, 2018, 67, 1561-1575.	0.3	31
25	Abstract 375: Origins of fractional control in regulated cell death. , 2018, , .		0
26	Mitochondrial dynamics as regulators of cancer biology. Cellular and Molecular Life Sciences, 2017, 74, 1999-2017.	2.4	166
27	The peroxisomes strike BAK: Regulation of peroxisome integrity by the Bcl-2 family. Journal of Cell Biology, 2017, 216, 547-549.	2.3	2
28	Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature, 2017, 546, 158-161.	13.7	153
29	Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition. Journal of Biological Chemistry, 2017, 292, 11727-11739.	1.6	59
30	Robust high-throughput kinetic analysis of apoptosis with real-time high-content live-cell imaging. Cell Death and Disease, 2016, 7, e2493-e2493.	2.7	55
31	Mitochondrial Fission in Human Diseases. Handbook of Experimental Pharmacology, 2016, 240, 159-188.	0.9	123
32	The deadly landscape of proâ€apoptotic <scp>BCL</scp> â€⊋ proteins in the outer mitochondrial membrane. FEBS Journal, 2016, 283, 2676-2689.	2.2	101
33	Physiological and Pharmacological Control of BAK, BAX, and Beyond. Trends in Cell Biology, 2016, 26, 906-917.	3.6	120
34	Cell Biology: ERADicating Survival with BOK. Current Biology, 2016, 26, R473-R476.	1.8	4
35	Mouse Liver Mitochondria Isolation, Size Fractionation, and Real-time MOMP Measurement. Bio-protocol, 2016, 6, .	0.2	7
36	Mitochondrial metabolism in hematopoietic stem cells requires functional <scp>FOXO</scp> 3. EMBO Reports, 2015, 16, 1164-1176.	2.0	109

#	Article	IF	CITATIONS
37	Activation of the Mitochondrial Fragmentation Protein DRP1 Correlates with BRAF V600E Melanoma. Journal of Investigative Dermatology, 2015, 135, 2544-2547.	0.3	48
38	Mitochondrial Division Is Requisite to RAS-Induced Transformation and Targeted by Oncogenic MAPK Pathway Inhibitors. Molecular Cell, 2015, 57, 521-536.	4.5	310
39	Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis. Molecular Cell, 2015, 59, 677-684.	4.5	84
40	Immune biomarkers are more accurate in prediction of survival in ulcerated than in non-ulcerated primary melanomas. Cancer Immunology, Immunotherapy, 2015, 64, 1193-1203.	2.0	18
41	Mitochondrial Shape Governs BAX-Induced Membrane Permeabilization and Apoptosis. Molecular Cell, 2015, 57, 69-82.	4.5	174
42	Anti-apoptotic BCL-2 proteins govern cellular outcome following B-RAFV600E inhibition and can be targeted to reduce resistance. Oncogene, 2015, 34, 857-867.	2.6	52
43	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
44	BCL-2 proteins: melanoma lives on the edge. Oncoscience, 2015, 2, 729-730.	0.9	11
45	How do I kill thee? Let me count the ways: p53 regulates <scp>PARP</scp> â€1 dependent necrosis. BioEssays, 2014, 36, 46-51.	1.2	28
46	Pivotal role for the ubiquitin Y59-E51 loop in lysine 48 polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8434-8439.	3.3	24
47	Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy?. Cancer & Metabolism, 2014, 2, 16.	2.4	55
48	Preclinical Pharmacological Evaluation of a Novel Multiple Kinase Inhibitor, ON123300, in Brain Tumor Models. Molecular Cancer Therapeutics, 2014, 13, 1105-1116.	1.9	19
49	B Cell Lymphoma-2 (BCL-2) Homology Domain 3 (BH3) Mimetics Demonstrate Differential Activities Dependent upon the Functional Repertoire of Pro- and Anti-apoptotic BCL-2 Family Proteins. Journal of Biological Chemistry, 2014, 289, 26481-26491.	1.6	28
50	Inducible Nitric Oxide Synthase Drives mTOR Pathway Activation and Proliferation of Human Melanoma by Reversible Nitrosylation of TSC2. Cancer Research, 2014, 74, 1067-1078.	0.4	86
51	Death upon a Kiss: Mitochondrial Outer Membrane Composition and Organelle Communication Govern Sensitivity to BAK/BAX-Dependent Apoptosis. Chemistry and Biology, 2014, 21, 114-123.	6.2	68
52	BAK/BAX activation and cytochrome c release assays using isolated mitochondria. Methods, 2013, 61, 146-155.	1.9	49
53	PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nature Chemical Biology, 2013, 9, 163-168.	3.9	150
54	BAK activation is necessary and sufficient to drive ceramide synthase-dependent ceramide accumulation following inhibition of BCL2-like proteins. Biochemical Journal, 2013, 452, 111-119.	1.7	49

#	Article	IF	CITATIONS
55	Survival of HER2-Positive Breast Cancer Cells: Receptor Signaling to Apoptotic Control Centers. Genes and Cancer, 2013, 4, 187-195.	0.6	23
56	Getting away with murder: how does the BCLâ€⊋ family of proteins kill with immunity?. Annals of the New York Academy of Sciences, 2013, 1285, 59-79.	1.8	34
57	Inter-organellar communication with mitochondria regulates both the intrinsic and extrinsic pathways of apoptosis. Communicative and Integrative Biology, 2013, 6, e22872.	0.6	6
58	Sensitization to the mitochondrial pathway of apoptosis augments melanoma tumor cell responses to conventional chemotherapeutic regimens. Cell Death and Disease, 2012, 3, e420-e420.	2.7	22
59	Examining BCL-2 Family Function with Large Unilamellar Vesicles. Journal of Visualized Experiments, 2012, , .	0.2	19
60	GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells. Immunity, 2012, 36, 1031-1046.	6.6	365
61	Sphingolipid Metabolism Cooperates with BAK and BAX to Promote the Mitochondrial Pathway of Apoptosis. Cell, 2012, 148, 988-1000.	13.5	377
62	Genetically defining the mechanism of Puma- and Bim-induced apoptosis. Cell Death and Differentiation, 2012, 19, 642-649.	5.0	38
63	Born to be Alive: A Role for the BCL-2 Family in Melanoma Tumor Cell Survival, Apoptosis, and Treatment. Frontiers in Oncology, 2011, 1, .	1.3	42
64	The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment. Genes and Cancer, 2011, 2, 523-537.	0.6	92
65	BH3 Domains other than Bim and Bid Can Directly Activate Bax/Bak. Journal of Biological Chemistry, 2011, 286, 491-501.	1.6	139
66	PB1-F2 Proteins from H5N1 and 20th Century Pandemic Influenza Viruses Cause Immunopathology. PLoS Pathogens, 2010, 6, e1001014.	2.1	142
67	The BCL-2 Family Reunion. Molecular Cell, 2010, 37, 299-310.	4.5	1,295
68	PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle, 2009, 8, 2692-2696.	1.3	93
69	Mitochondrial Outer Membrane Proteins Assist Bid in Bax-mediated Lipidic Pore Formation. Molecular Biology of the Cell, 2009, 20, 2276-2285.	0.9	107
70	Stabbed in the BAX. Nature, 2008, 455, 1047-1049.	13.7	49
71	How do BCL-2 proteins induce mitochondrial outer membrane permeabilization?. Trends in Cell Biology, 2008, 18, 157-164.	3.6	839
72	Chemical Inhibition of the Mitochondrial Division Dynamin Reveals Its Role in Bax/Bak-Dependent Mitochondrial Outer Membrane Permeabilization. Developmental Cell, 2008, 14, 193-204.	3.1	992

#	Article	IF	CITATIONS
73	Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proceedings of the United States of America, 2008, 105, 20327-20332.	3.3	204
74	p53 and Metabolism: Inside the TIGAR. Cell, 2006, 126, 30-32.	13.5	218
75	Dissecting p53-dependent apoptosis. Cell Death and Differentiation, 2006, 13, 994-1002.	5.0	395
76	Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death and Differentiation, 2006, 13, 1396-1402.	5.0	491
77	Do inducers of apoptosis trigger caspase-independent cell death?. Nature Reviews Molecular Cell Biology, 2005, 6, 268-275.	16.1	287
78	Connected to Death: The (Unexpurgated) Mitochondrial Pathway of Apoptosis. Science, 2005, 310, 66-67.	6.0	255
79	BH3 Domains of BH3-Only Proteins Differentially Regulate Bax-Mediated Mitochondrial Membrane Permeabilization Both Directly and Indirectly. Molecular Cell, 2005, 17, 525-535.	4.5	1,065
80	PUMA Couples the Nuclear and Cytoplasmic Proapoptotic Function of p53. Science, 2005, 309, 1732-1735.	6.0	500
81	Direct Activation of Bax by p53 Mediates Mitochondrial Membrane Permeabilization and Apoptosis. Science, 2004, 303, 1010-1014.	6.0	2,143
82	Cytoplasmic p53: bax and forward. Cell Cycle, 2004, 3, 429-31.	1.3	51
83	p53's believe it or not: lessons on transcription-independent death. Journal of Clinical Immunology, 2003, 23, 355-361.	2.0	72
84	Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell, 2003, 4, 371-381.	7.7	289
85	Identification and Characterization of A Novel Rat Ov-Serpin Family Member, Trespin. Journal of Biological Chemistry, 2002, 277, 26412-26421.	1.6	6
86	The Androgen Receptor Represses Transforming Growth Factor-β Signaling through Interaction with Smad3. Journal of Biological Chemistry, 2002, 277, 1240-1248.	1.6	178
87	Bcl-xL Blocks Transforming Growth Factor-β1-induced Apoptosis by Inhibiting Cytochrome c Release and Not by Directly Antagonizing Apaf-1-dependent Caspase Activation in Prostate Epithelial Cells. Journal of Biological Chemistry, 2001, 276, 26614-26621.	1.6	91
88	Mitochondrial Dynamics and Stress Signaling in Cancer. , 0, , .		0
89	A Kinetic Fluorescence Polarization Ligand Assay for Monitoring BAX Early-Activation. SSRN Electronic Journal, 0, , .	0.4	0