
Rong An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3035741/publications.pdf Version: 2024-02-01

RONG AN

#	Article	IF	CITATIONS
1	Penalty finite element method for Navier–Stokes equations with nonlinear slip boundary conditions. International Journal for Numerical Methods in Fluids, 2012, 69, 550-566.	1.6	42
2	Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation. Journal of Scientific Computing, 2016, 69, 1-27.	2.3	39
3	Semi-discrete stabilized finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions based on regularization procedure. Numerische Mathematik, 2011, 117, 1-36.	1.9	31
4	Two-level pressure projection finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions. Applied Numerical Mathematics, 2011, 61, 285-297.	2.1	30
5	Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations. Applied Numerical Mathematics, 2017, 112, 167-181.	2.1	23
6	Two-step algorithms for the stationary incompressible Navier–Stokes equations with friction boundary conditions. Applied Numerical Mathematics, 2017, 120, 97-114.	2.1	13
7	Solvability of Navier-Stokes equations with leak boundary conditions. Acta Mathematicae Applicatae Sinica, 2009, 25, 225-234.	0.7	12
8	Two-Level Newton Iteration Methods for Navier-Stokes Type Variational Inequality Problem. Advances in Applied Mathematics and Mechanics, 2013, 5, 36-54.	1.2	10
9	Two-level variational multiscale finite element methods for Navier–Stokes type variational inequality problem. Journal of Computational and Applied Mathematics, 2015, 290, 656-669.	2.0	10
10	Error analysis of a fractional-step method for magnetohydrodynamics equations. Journal of Computational and Applied Mathematics, 2017, 313, 168-184.	2.0	10
11	Error Analysis of a New Fractional-Step Method for the Incompressible Navier–Stokes Equations with Variable Density. Journal of Scientific Computing, 2020, 84, 1.	2.3	10
12	On the rotating Navier-Stokes equations with mixed boundary conditions. Acta Mathematica Sinica, English Series, 2008, 24, 577-598.	0.6	9
13	Optimal Error Estimates of Semi-implicit Galerkin Method for Time-Dependent Nematic Liquid Crystal Flows. Journal of Scientific Computing, 2018, 74, 979-1008.	2.3	9
14	Comparisons of Stokes/Oseen/Newton iteration methods for Navier–Stokes equations with friction boundary conditions. Applied Mathematical Modelling, 2014, 38, 5535-5544.	4.2	8
15	A compact <i>C</i> ⁰ discontinuous Galerkin method for Kirchhoff plates. Numerical Methods for Partial Differential Equations, 2015, 31, 1265-1287.	3.6	8
16	Error analysis of a time-splitting method for incompressible flows with variable density. Applied Numerical Mathematics, 2020, 150, 384-395.	2.1	8
17	Optimal Error Analysis of Euler and CrankNicolson Projection Finite Difference Schemes for LandauLifshitz Equation. SIAM Journal on Numerical Analysis, 2021, 59, 1639-1662.	2.3	8
18	Global Well-Posedness and Pullback Attractors for an Incompressible Non-Newtonian Fluid with Infinite Delays. Differential Equations and Dynamical Systems, 2017, 25, 39-64.	1.0	7

Rong An

#	Article	IF	CITATIONS
19	Decoupled, semi-implicit scheme for a coupled system arising in magnetohydrodynamics problem. Applied Numerical Mathematics, 2018, 127, 142-163.	2.1	7
20	Temporal error analysis of a new Euler semi-implicit scheme for the incompressible Navier–Stokes equations with variable density. Communications in Nonlinear Science and Numerical Simulation, 2022, 109, 106330.	3.3	7
21	Variational inequality for the rotating Navier–Stokes equations with subdifferential boundary conditions. Computers and Mathematics With Applications, 2008, 55, 581-587.	2.7	6
22	Temporal error analysis of Euler semi-implicit scheme for the magnetohydrodynamics equations with variable density. Applied Numerical Mathematics, 2021, 166, 146-167.	2.1	6
23	Two-level iteration penalty methods for the incompressible flows. Applied Mathematical Modelling, 2015, 39, 630-641.	4.2	5
24	Error estimates of two-level finite element method for Smagorinsky model. Applied Mathematics and Computation, 2016, 274, 786-800.	2.2	5
25	Two-Level Iteration Penalty Methods for the Navier-Stokes Equations with Friction Boundary Conditions. Abstract and Applied Analysis, 2013, 2013, 1-17.	0.7	4
26	Two-Level Defect-Correction Method for Steady Navier-Stokes Problem with Friction Boundary Conditions. Advances in Applied Mathematics and Mechanics, 2016, 8, 932-952.	1.2	4
27	Iteration penalty method for the incompressible Navier-Stokes equations with variable density based on the artificial compressible method. Advances in Computational Mathematics, 2020, 46, 1.	1.6	4
28	Temporal convergence analysis of an energy preserving projection method for a coupled magnetohydrodynamics equations. Journal of Computational and Applied Mathematics, 2021, 386, 113236.	2.0	4
29	Analysis of backward Euler projection FEM for the Landau–Lifshitz equation. IMA Journal of Numerical Analysis, 2022, 42, 2336-2360.	2.9	4
30	Error analysis of the second-order BDF finite element scheme for the thermally coupled incompressible magnetohydrodynamic system. Computers and Mathematics With Applications, 2022, 118, 110-119.	2.7	4
31	Finite element approximation for fourth-order nonlinear problem in the plane. Applied Mathematics and Computation, 2007, 194, 143-155.	2.2	2
32	Discontinuous Galerkin finite element method for the fourth-order obstacle problem. Applied Mathematics and Computation, 2009, 209, 351-355.	2.2	2
33	Solvability of the 3D rotating Navier–Stokes equations coupled with a 2D biharmonic problem with obstacles and gradient restriction. Applied Mathematical Modelling, 2009, 33, 2897-2906.	4.2	2
34	TWO-LEVEL ITERATION PENALTY AND VARIATIONAL MULTISCALE METHOD FOR STEADY INCOMPRESSIBLE FLOWS. Journal of Applied Analysis and Computation, 2016, 6, 607-627.	0.5	2
35	Unconditionally Optimal Error Analysis of a Linear Euler FEM Scheme for the Navier–Stokes Equations with Mass Diffusion. Journal of Scientific Computing, 2022, 90, 1.	2.3	2
36	Some optimal error estimates of biharmonic problem using conforming finite element. Applied Mathematics and Computation, 2007, 194, 298-308.	2.2	1

Rong An

#	Article	IF	CITATIONS
37	The boundary integral method for the steady rotating Navier–Stokes equations in exterior domain (I): the existence of solution. Nonlinear Differential Equations and Applications, 2010, 17, 95-108.	0.8	1
38	Two-Level Brezzi-PitkÃ ¤ anta Discretization Method Based on Newton Iteration for Navier-Stokes Equations with Friction Boundary Conditions. Abstract and Applied Analysis, 2014, 2014, 1-14.	0.7	1
39	Discontinuous Galerkin finite element method for plate contact problem with frictional boundary conditions. Journal of Numerical Mathematics, 2014, 22, .	3.5	1
40	The boundary integral method for the linearized rotating Navier–Stokes equations in exterior domain. Applied Mathematics and Computation, 2010, 216, 2671-2678.	2.2	0
41	Fundamental solution of rotating generalized stokes problem in â"3. Acta Mathematicae Applicatae Sinica, 2011, 27, 761-768.	0.7	0
42	ConstrainedC0Finite Element Methods for Biharmonic Problem. Abstract and Applied Analysis, 2012, 2012, 1-19.	0.7	0
43	Approximation for Navier–Stokes equations around a rotating obstacle. Applied Mathematics Letters, 2012, 25, 209-214.	2.7	0
44	Two-Level Brezzi-Pitkäanta Stabilized Finite Element Methods for the Incompressible Flows. Abstract and Applied Analysis, 2014, 2014, 1-14.	0.7	0
45	Accuracy analysis of the boundary integral method for steady Navier-Stokes equations around a rotating obstacle. Acta Mathematicae Applicatae Sinica, 2016, 32, 529-536.	0.7	0
46	A New Higher Order Fractional-Step Method for the Incompressible Navier-Stokes Equations. Advances in Applied Mathematics and Mechanics, 2020, 12, 362-385.	1.2	0
47	OPTIMAL ERROR ANALYSIS OF PARTIALLY-UPDATED PROJECTION FEM SCHEME FOR THE LANDAU-LIFSHITZ EQUATION BASED ON THE CRANK-NICOLSON DISCRETIZATION. Journal of Applied Analysis and Computation, 2020, .	0.5	0
48	Temporal convergence of extrapolated BDF-2 scheme for the Maxwell-Landau-Lifshitz equations. Computers and Mathematics With Applications, 2022, , .	2.7	0