
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3035485/publications.pdf Version: 2024-02-01

LIAMELLIN

#	Article	IF	CITATIONS
1	Atomic‣ayer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials, 2009, 19, 3077-3083.	7.8	2,310
2	Broadband graphene polarizer. Nature Photonics, 2011, 5, 411-415.	15.6	961
3	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-11530.	7.2	906
4	Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Optics Express, 2015, 23, 12823.	1.7	866
5	From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Advanced Functional Materials, 2015, 25, 6996-7002.	7.8	862
6	Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7, 12967.	5.8	835
7	Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Advanced Materials, 2017, 29, 1603276.	11.1	721
8	Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 501-506.	3.3	657
9	Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37, 1856.	1.7	589
10	Broadband Nonlinear Photonics in Few‣ayer MXene Ti ₃ C ₂ T _x (T =) Tj E	ГQq0 0 0 r 4.4	gBT /Overloch
11	Recent developments in emerging two-dimensional materials and their applications. Journal of Materials Chemistry C, 2020, 8, 387-440.	2.7	501

12	Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials, 2020, 237, 119827.	5.7	484
13	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemical Society Reviews, 2019, 48, 2891-2912.	18.7	482
14	Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nature Communications, 2019, 10, 28.	5.8	475
15	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 11896-11900.	7.2	465
16	2D Black Phosphorus–Based Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808306.	7.8	438
17	Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics. Advanced Functional Materials, 2010, 20, 782-791.	7.8	434
18	Metalâ€ionâ€Modified Black Phosphorus with Enhanced Stability and Transistor Performance. Advanced Materials, 2017, 29, 1703811.	11.1	431

2

#	Article	IF	CITATIONS
19	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chemistry of Materials, 2020, 32, 1703-1747.	3.2	429
20	Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4, 297-307.	5.8	408
21	Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Optics Express, 2015, 23, 20030.	1.7	399
22	2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser and Photonics Reviews, 2019, 13, 1800327.	4.4	353
23	Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chemical Society Reviews, 2018, 47, 5588-5601.	18.7	352
24	Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquidâ€Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705833.	7.8	348
25	Two-Dimensional MXene (Ti ₃ C ₂)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Applied Materials & amp; Interfaces, 2018, 10, 27631-27643.	4.0	346
26	Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Selfâ€Powered Photodetector. Advanced Functional Materials, 2017, 27, 1606834.	7.8	342
27	Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572, 341-346.	13.7	341
28	Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots. Advanced Optical Materials, 2016, 4, 1223-1229.	3.6	326
29	A Novel Topâ€Đown Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	11.1	318
30	Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale, 2020, 12, 3535-3559.	2.8	318
31	Twoâ€Đimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	11.1	314
32	Fewâ€layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability. Laser and Photonics Reviews, 2018, 12, 1700221.	4.4	311
33	2D Vâ€V Binary Materials: Status and Challenges. Advanced Materials, 2019, 31, e1902352.	11.1	303
34	Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. Journal of Controlled Release, 2019, 296, 150-161.	4.8	303
35	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports, 2019, 795, 1-51.	10.3	303
36	Few‣ayer Black Phosphorus Nanosheets as Electrocatalysts for Highly Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2017, 7, 1700396.	10.2	301

#	Article	IF	CITATIONS
37	MXeneâ€Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Advanced Functional Materials, 2019, 29, 1807326.	7.8	301
38	Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Applied Materials & Interfaces, 2017, 9, 12759-12765.	4.0	296
39	Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Materials Horizons, 2017, 4, 997-1019.	6.4	296
40	Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Optics Express, 2018, 26, 22750.	1.7	289
41	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
42	Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angewandte Chemie - International Edition, 2016, 55, 13849-13853.	7.2	269
43	Broadband Nonlinear Optical Response in Fewâ€Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability. Advanced Optical Materials, 2017, 5, 1700301.	3.6	269
44	Ultrathin Metal–Organic Framework: An Emerging Broadband Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials, 2018, 6, 1800561.	3.6	268
45	Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 28 $\hat{1}$ /4m. Optics Express, 2015, 23, 24713.	1.7	259
46	Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27, 462001.	1.3	259
47	Highâ€Performance Photoâ€Electrochemical Photodetector Based on Liquidâ€Exfoliated Fewâ€Layered InSe Nanosheets with Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705237.	7.8	258
48	Manyâ€Body Complexes in 2D Semiconductors. Advanced Materials, 2019, 31, e1706945.	11.1	255
49	Robust SnO _{2â^'<i>x</i>} Nanoparticleâ€Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 8901-8905.	7.2	252
50	TiL ₄ oordinated Black Phosphorus Quantum Dots as an Efficient Contrast Agent for In Vivo Photoacoustic Imaging of Cancer. Small, 2017, 13, 1602896.	5.2	251
51	Broadband Nonlinear Photoresponse of 2D TiS ₂ for Ultrashort Pulse Generation and Allâ€Optical Thresholding Devices. Advanced Optical Materials, 2018, 6, 1701166.	3.6	248
52	Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74, 144-154.	5.7	247
53	Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale, 2016, 8, 1066-1072.	2.8	246
54	Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chemistry of Materials, 2017, 29, 2191-2201.	3.2	244

#	Article	IF	CITATIONS
55	Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Scientific Reports, 2016, 6, 30361.	1.6	242
56	Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today, 2019, 25, 135-155.	6.2	240
57	Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale, 2019, 11, 2577-2593.	2.8	236
58	Flexible Transparent Electronic Gas Sensors. Small, 2016, 12, 3748-3756.	5.2	234
59	Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale, 2016, 8, 6410-6434.	2.8	233
60	Ultrasmall Bismuth Quantum Dots: Facile Liquid-Phase Exfoliation, Characterization, and Application in High-Performance UV–Vis Photodetector. ACS Photonics, 2018, 5, 621-629.	3.2	230
61	Black Phosphorus–Polymer Composites for Pulsed Lasers. Advanced Optical Materials, 2015, 3, 1447-1453.	3.6	228
62	Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for Highâ€Performance Gas Sensing. Small, 2015, 11, 5409-5415.	5.2	225
63	Microwave and optical saturable absorption in graphene. Optics Express, 2012, 20, 23201.	1.7	220
64	Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers. Optics Express, 2015, 23, 22643.	1.7	220
65	Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Letters, 2020, 12, 36.	14.4	218
66	Shortâ€Chain Ligandâ€Passivated Stable αâ€CsPbI ₃ Quantum Dot for Allâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900991.	7.8	216
67	Recent Advances in Functional 2D MXeneâ€Based Nanostructures for Nextâ€Generation Devices. Advanced Functional Materials, 2020, 30, 2005223.	7.8	216
68	Few‣ayer Tin Sulfide: A Promising Blackâ€Phosphorusâ€Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in Allâ€Optical Switching and Wavelength Conversion. Advanced Optical Materials, 2018, 6, 1700985.	3.6	212
69	Graphene–Bi ₂ Te ₃ Heterostructure as Saturable Absorber for Short Pulse Generation. ACS Photonics, 2015, 2, 832-841.	3.2	208
70	Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale, 2017, 9, 8096-8101.	2.8	207
71	Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosensors and Bioelectronics, 2019, 130, 315-321.	5.3	207
72	Metabolizable Ultrathin Bi ₂ Se ₃ Nanosheets in Imagingâ€Guided Photothermal Therapy. Small, 2016, 12, 4136-4145.	5.2	203

#	Article	IF	CITATIONS
73	Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Optics Express, 2016, 24, 25933.	1.7	200
74	Conceptually Novel Black Phosphorus/Cellulose Hydrogels as Promising Photothermal Agents for Effective Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1701510.	3.9	188
75	Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes. Advanced Materials, 2019, 31, e1807981.	11.1	187
76	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Applied Materials & Interfaces, 2017, 9, 36137-36145.	4.0	185
77	Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications. Journal of Materials Chemistry A, 2020, 8, 8813-8830.	5.2	185
78	Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability. ACS Photonics, 2017, 4, 1466-1476.	3.2	173
79	Graphdiyneâ€Based Flexible Photodetectors with High Responsivity and Detectivity. Advanced Materials, 2020, 32, e2001082.	11.1	171
80	Recent Advances in Emerging 2D Materialâ€Based Gas Sensors: Potential in Disease Diagnosis. Advanced Materials Interfaces, 2019, 6, 1901329.	1.9	169
81	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	5.2	168
82	New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO ₂ onto Ferroelectricâ€Encapsulated Cathode: Toward Ultrastable Freeâ€Standing Room Temperature Sodium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1705537.	7.8	167
83	2D Tellurium Based Highâ€Performance Allâ€Optical Nonlinear Photonic Devices. Advanced Functional Materials, 2019, 29, 1806346.	7.8	165
84	All-Optical Switching of Two Continuous Waves in Few Layer Bismuthene Based on Spatial Cross-Phase Modulation. ACS Photonics, 2017, 4, 2852-2861.	3.2	164
85	Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Advanced Materials, 2022, 34, e2107554.	11.1	163
86	2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics. Advanced Optical Materials, 2017, 5, 1700884.	3.6	162
87	A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. Journal of Materials Chemistry A, 2017, 5, 6581-6588.	5.2	160
88	Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability. ACS Applied Materials & Interfaces, 2018, 10, 3538-3548.	4.0	159
89	Critical coupling with graphene-based hyperbolic metamaterials. Scientific Reports, 2014, 4, 5483.	1.6	158
90	ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. Nano Letters, 2020, 20, 3943-3955.	4.5	158

#	Article	IF	CITATIONS
91	High Efficiency Mesoscopic Solar Cells Using CsPbI ₃ Perovskite Quantum Dots Enabled by Chemical Interface Engineering. Journal of the American Chemical Society, 2020, 142, 3775-3783.	6.6	156
92	Allâ€Optical Phosphorene Phase Modulator with Enhanced Stability Under Ambient Conditions. Laser and Photonics Reviews, 2018, 12, 1800016.	4.4	155
93	Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. Journal of Materials Chemistry C, 2018, 6, 9582-9593.	2.7	153
94	Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. Journal of Materials Chemistry B, 2017, 5, 5433-5440.	2.9	152
95	Healable, Transparent, Roomâ€Temperature Electronic Sensors Based on Carbon Nanotube Networkâ€Coated Polyelectrolyte Multilayers. Small, 2015, 11, 5807-5813.	5.2	151
96	Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. Journal of Materials Chemistry C, 2017, 5, 3007-3013.	2.7	150
97	Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. Small, 2017, 13, 1702739.	5.2	150
98	Heteroâ€MXenes: Theory, Synthesis, and Emerging Applications. Advanced Materials, 2021, 33, e2004129.	11.1	150
99	Ultrathin 2D Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. ACS Photonics, 2018, 5, 1808-1816.	3.2	148
100	Skyrmion dynamicsÂin a frustrated ferromagnetic filmÂand current-induced helicity locking-unlocking transition. Nature Communications, 2017, 8, 1717.	5.8	147
101	Biocompatible Two-Dimensional Titanium Nanosheets for Multimodal Imaging-Guided Cancer Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 22129-22140.	4.0	147
102	Insights from nanotechnology in COVID-19 treatment. Nano Today, 2021, 36, 101019.	6.2	146
103	Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and Highâ€Power Zinc Ion Battery. Advanced Functional Materials, 2019, 29, 1901336.	7.8	145
104	Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light: Science and Applications, 2020, 9, 161.	7.7	145
105	Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Applied Physics Reviews, 2019, 6, .	5.5	143
106	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2001334.	7.8	142
107	Strong Depletion in Hybrid Perovskite p–n Junctions Induced by Local Electronic Doping. Advanced Materials, 2018, 30, e1705792.	11.1	141
108	Two-Dimensional Tellurium: Progress, Challenges, and Prospects. Nano-Micro Letters, 2020, 12, 99.	14.4	139

#	Article	IF	CITATIONS
109	Vector dissipative solitons in graphene mode locked fiber lasers. Optics Communications, 2010, 283, 3334-3338.	1.0	138
110	Chiral Perovskites: Promising Materials toward Nextâ€Generation Optoelectronics. Small, 2019, 15, e1902237.	5.2	137
111	Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application. Advanced Functional Materials, 2017, 27, 1702437.	7.8	136
112	Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Optics Express, 2013, 21, 10010.	1.7	135
113	Solarâ€Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges. Solar Rrl, 2020, 4, 1900400.	3.1	133
114	Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Science Advances, 2020, 6, eaay6825.	4.7	126
115	NIRâ€II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. Advanced Functional Materials, 2021, 31, 2101625.	7.8	126
116	Few‣ayer Phosphoreneâ€Decorated Microfiber for Allâ€Optical Thresholding and Optical Modulation. Advanced Optical Materials, 2017, 5, 1700026.	3.6	125
117	2 μm passively Q-switched laser based on black phosphorus. Optical Materials Express, 2016, 6, 2374.	1.6	124
118	THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. Journal of Materials Chemistry C, 2018, 6, 1291-1306.	2.7	124
119	An Allâ€Optical, Actively Q‣witched Fiber Laser by an Antimoneneâ€Based Optical Modulator. Laser and Photonics Reviews, 2019, 13, 1800313.	4.4	122
120	Enhanced Photodetection Properties of Tellurium@Selenium Rollâ€ŧoâ€Roll Nanotube Heterojunctions. Small, 2019, 15, e1900902.	5.2	120
121	MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small, 2021, 17, e2006054.	5.2	119
122	Polarization rotation vector solitons in a graphene mode-locked fiber laser. Optics Express, 2012, 20, 27283.	1.7	118
123	Carbon-based nanozymes for biomedical applications. Nano Research, 2021, 14, 570-583.	5.8	118
124	MXeneâ€Based Nonlinear Optical Information Converter for Allâ€Optical Modulator and Switcher. Laser and Photonics Reviews, 2018, 12, 1800215.	4.4	117
125	MXene Ti ₃ C ₂ T <i>_x</i> : A Promising Photothermal Conversion Material and Application in Allâ€Optical Modulation and Allâ€Optical Information Loading. Advanced Optical Materials, 2019, 7, 1900060.	3.6	115
126	Fundamental and harmonic mode-locking at 21 μm with black phosphorus saturable absorber. Optics Express, 2017, 25, 16916.	1.7	114

#	Article	IF	CITATIONS
127	Recent Developments in Stability and Passivation Techniques of Phosphorene toward Nextâ€Generation Device Applications. Advanced Functional Materials, 2019, 29, 1903419.	7.8	113
128	Recent Progress in 2D Materialâ€Based Saturable Absorbers for All Solidâ€State Pulsed Bulk Lasers. Laser and Photonics Reviews, 2020, 14, 1900240.	4.4	111
129	Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. Journal of Materials Chemistry C, 2017, 5, 6129-6135.	2.7	109
130	Midâ€Infrared Photonics Using 2D Materials: Status and Challenges. Laser and Photonics Reviews, 2020, 14, 1900098.	4.4	106
131	Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Applied Materials & Interfaces, 2019, 11, 4278-4287.	4.0	105
132	A flexible transparent colorimetric wrist strap sensor. Nanoscale, 2017, 9, 869-874.	2.8	104
133	Two-dimensional tellurium–polymer membrane for ultrafast photonics. Nanoscale, 2019, 11, 6235-6242.	2.8	104
134	Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2022, 122, 1127-1207.	23.0	103
135	Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nature Communications, 2020, 11, 1330.	5.8	102
136	Emerging Monoâ€Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications. Advanced Functional Materials, 2021, 31, 2007584.	7.8	102
137	Current status and prospects of memristors based on novel 2D materials. Materials Horizons, 2020, 7, 1495-1518.	6.4	101
138	Additive-mediated intercalation and surface modification of MXenes. Chemical Society Reviews, 2022, 51, 2972-2990.	18.7	101
139	Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light: Science and Applications, 2020, 9, 114.	7.7	100
140	Graphdiyneâ€Polymer Nanocomposite as a Broadband and Robust Saturable Absorber for Ultrafast Photonics. Laser and Photonics Reviews, 2020, 14, 1900367.	4.4	99
141	Nonlinear Few‣ayer Antimoneneâ€Based Allâ€Optical Signal Processing: Ultrafast Optical Switching and Highâ€ S peed Wavelength Conversion. Advanced Optical Materials, 2018, 6, 1701287.	3.6	97
142	Topological Insulator Solution Filled in Photonic Crystal Fiber for Passive Mode-Locked Fiber Laser. IEEE Photonics Technology Letters, 2015, 27, 264-267.	1.3	96
143	Niobium Carbide MXenes with Broad-Band Nonlinear Optical Response and Ultrafast Carrier Dynamics. ACS Nano, 2020, 14, 10492-10502.	7.3	96
144	Fieldâ€Induced nâ€Doping of Black Phosphorus for CMOS Compatible 2D Logic Electronics with High Electron Mobility. Advanced Functional Materials, 2017, 27, 1702211.	7.8	95

#	Article	IF	CITATIONS
145	Schottky Barriers in Bilayer Phosphorene Transistors. ACS Applied Materials & Interfaces, 2017, 9, 12694-12705.	4.0	94
146	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie, 2017, 129, 12058-12062.	1.6	93
147	Recent Advances in Semiconducting Monoelemental Selenium Nanostructures for Device Applications. Advanced Functional Materials, 2020, 30, 2003301.	7.8	93
148	Recent advances in doping engineering of black phosphorus. Journal of Materials Chemistry A, 2020, 8, 5421-5441.	5.2	93
149	Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. Research, 2020, 2020, 2624617.	2.8	93
150	Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angewandte Chemie, 2016, 128, 14053-14057.	1.6	92
151	Black phosphorus nanosheets for rapid microRNA detection. Nanoscale, 2018, 10, 5060-5064.	2.8	91
152	Mechanoâ€Based Transductive Sensing for Wearable Healthcare. Small, 2018, 14, e1702933.	5.2	91
153	High‧peed and Highâ€Responsivity Hybrid Silicon/Blackâ€Phosphorus Waveguide Photodetectors at 2µm. Laser and Photonics Reviews, 2019, 13, 1900032.	4.4	91
154	2D Material Chemistry: Graphdiyne-based Biochemical Sensing. Chemical Research in Chinese Universities, 2020, 36, 622-630.	1.3	91
155	Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime. Photonics Research, 2015, 3, 214.	3.4	90
156	Perovskite CsPbX ₃ : A Promising Nonlinear Optical Material and Its Applications for Ambient Allâ€Optical Switching with Enhanced Stability. Advanced Optical Materials, 2018, 6, 1800400.	3.6	90
157	Black Phosphorous/Indium Selenide Photoconductive Detector for Visible and Nearâ€Infrared Light with High Sensitivity. Advanced Optical Materials, 2019, 7, 1900020.	3.6	89
158	Recent Advances in Strain-Induced Piezoelectric and Piezoresistive Effect-Engineered 2D Semiconductors for Adaptive Electronics and Optoelectronics. Nano-Micro Letters, 2020, 12, 106.	14.4	89
159	Dual-wavelength Q-switched Er:SrF_2 laser with a black phosphorus absorber in the mid-infrared region. Optics Express, 2016, 24, 30289.	1.7	88
160	On-Nanowire Axial Heterojunction Design for High-Performance Photodetectors. ACS Nano, 2016, 10, 8474-8481.	7.3	88
161	2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges. Advanced Healthcare Materials, 2021, 10, e2001743.	3.9	88
162	Fewâ€Layer Topological Insulator for Allâ€Optical Signal Processing Using the Nonlinear Kerr Effect. Advanced Optical Materials, 2015, 3, 1769-1778.	3.6	87

#	Article	IF	CITATIONS
163	Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. Npj 2D Materials and Applications, 2019, 3, .	3.9	87
164	Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11, 12413-12435.	2.8	87
165	MZIâ€Based Allâ€Optical Modulator Using MXene Ti ₃ C ₂ T <i>_x</i> (T =) Tj	ETOq1 1	0.784314 rg 87
166	Reassembly of ⁸⁹ Zrâ€Labeled Cancer Cell Membranes into Multicompartment Membraneâ€Derived Liposomes for PETâ€Trackable Tumorâ€Targeted Theranostics. Advanced Materials, 2018, 30, e1704934.	11.1	86
167	Nonlinear Few‣ayer MXeneâ€Assisted Allâ€Optical Wavelength Conversion at Telecommunication Band. Advanced Optical Materials, 2019, 7, 1801777.	3.6	86
168	Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Applied Materials Today, 2019, 15, 297-304.	2.3	86
169	Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photonics Research, 2017, 5, 662.	3.4	85
170	In-plane anisotropic electronics based on low-symmetry 2D materials: progress and prospects. Nanoscale Advances, 2020, 2, 109-139.	2.2	84
171	Ultrafast Relaxation Dynamics and Nonlinear Response of Few‣ayer Niobium Carbide MXene. Small Methods, 2020, 4, 2000250.	4.6	84
172	Highly stable MXene (V ₂ CT _x)-based harmonic pulse generation. Nanophotonics, 2020, 9, 2577-2585.	2.9	83
173	Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Applied Materials Today, 2019, 15, 115-138.	2.3	82
174	Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. Nano-Micro Letters, 2020, 12, 179.	14.4	82
175	Monolayer tellurene–metal contacts. Journal of Materials Chemistry C, 2018, 6, 6153-6163.	2.7	81
176	Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy. Nanoscale Horizons, 2019, 4, 1185-1193.	4.1	81
177	Band Structure Engineering in 2D Materials for Optoelectronic Applications. Advanced Materials Technologies, 2018, 3, 1800072.	3.0	78
178	Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Interfaces, 2017, 9, 29273-29284.	4.0	76
179	2D GeP as a Novel Broadband Nonlinear Optical Material for Ultrafast Photonics. Laser and Photonics Reviews, 2019, 13, 1900123.	4.4	76
180	Tuning of Interlayer Coupling in Large-Area Graphene/WSe ₂ van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications. ACS Photonics, 2017, 4, 1531-1538.	3.2	75

#	Article	IF	CITATIONS
181	High-performance polarization-sensitive photodetectors on two-dimensional <i>β</i> -InSe. National Science Review, 2022, 9, nwab098.	4.6	75
182	Refractive Index Sensors Based on Ti ₃ C ₂ T _x MXene Fibers. ACS Applied Nano Materials, 2020, 3, 303-311.	2.4	74
183	Monolayer Bismuthene-Metal Contacts: A Theoretical Study. ACS Applied Materials & Interfaces, 2017, 9, 23128-23140.	4.0	73
184	An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 323-333.	5.2	71
185	Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale, 2020, 12, 2201-2227.	2.8	71
186	Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. Journal of Innovative Optical Health Sciences, 2018, 11, .	0.5	70
187	Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber. Photonics Research, 2018, 6, 198.	3.4	70
188	2D Materials Enabled Nextâ€Generation Integrated Optoelectronics: from Fabrication to Applications. Advanced Science, 2021, 8, e2003834.	5.6	70
189	An overview of the optical properties and applications of black phosphorus. Nanoscale, 2020, 12, 3513-3534.	2.8	69
190	Pulsed Lasers Employing Solutionâ€Processed Plasmonic Cu _{3â^'} <i>_x</i> P Colloidal Nanocrystals. Advanced Materials, 2016, 28, 3535-3542.	11.1	68
191	A fully inkjet-printed transparent humidity sensor based on a Ti ₃ C ₂ /Ag hybrid for touchless sensing of finger motion. Nanoscale, 2019, 11, 21522-21531.	2.8	68
192	A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. Journal of Materials Chemistry C, 2019, 7, 871-878.	2.7	67
193	Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. Nanoscale, 2020, 12, 2309-2327.	2.8	67
194	Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. Biomaterials, 2020, 260, 120339.	5.7	66
195	Xenes as an Emerging 2D Monoelemental Family: Fundamental Electrochemistry and Energy Applications. Advanced Functional Materials, 2020, 30, 2002885.	7.8	66
196	Graphene/MoS ₂ /Graphene Vertical Heterostructureâ€Based Broadband Photodetector with High Performance. Advanced Materials Interfaces, 2021, 8, 2001730.	1.9	65
197	2D–Materialsâ€Based Quantum Dots: Gateway Towards Nextâ€Generation Optical Devices. Advanced Optical Materials, 2017, 5, 1700257.	3.6	64
198	Black phosphorus: a two-dimensional reductant for in situ nanofabrication. Npj 2D Materials and Applications, 2017, 1, .	3.9	63

#	Article	IF	CITATIONS
199	Developments and Perspectives on Robust Nano―and Microstructured Binderâ€Free Electrodes for Bifunctional Water Electrolysis and Beyond. Advanced Energy Materials, 2022, 12, .	10.2	63
200	Ferroelectric-Driven Exciton and Trion Modulation in Monolayer Molybdenum and Tungsten Diselenides. ACS Nano, 2019, 13, 5335-5343.	7.3	61
201	A Broadband Optical Modulator Based on a Graphene Hybrid Plasmonic Waveguide. Journal of Lightwave Technology, 2016, 34, 4948-4953.	2.7	60
202	A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale, 2020, 12, 5313-5323.	2.8	60
203	Nonlinear Photonics Using Lowâ€Dimensional Metalâ€Halide Perovskites: Recent Advances and Future Challenges. Advanced Materials, 2021, 33, e2004446.	11.1	58
204	2D IIIâ€Nitride Materials: Properties, Growth, and Applications. Advanced Materials, 2021, 33, e2006761.	11.1	58
205	Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomaterials Science, 2021, 9, 5437-5471.	2.6	58
206	Improved Transfer Quality of CVD-Grown Graphene by Ultrasonic Processing of Target Substrates: Applications for Ultra-fast Laser Photonics. ACS Applied Materials & Interfaces, 2013, 5, 10288-10293.	4.0	57
207	Ultraeffective Cancer Therapy with an Antimoneneâ€Based Xâ€Ray Radiosensitizer. Advanced Functional Materials, 2020, 30, 1906010.	7.8	57
208	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	14.4	57
209	Graphdiyne as a Promising Midâ€Infrared Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials, 2020, 8, 2000067.	3.6	57
210	Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses. Materials, 2017, 10, 210.	1.3	56
211	Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Science China Materials, 2020, 63, 2397-2428.	3.5	56
212	A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. National Science Review, 2022, 9, .	4.6	56
213	Bismuth telluride topological insulator nanosheet saturable absorbers for qâ€switched modeâ€locked Tm:ZBLAN waveguide lasers. Annalen Der Physik, 2016, 528, 543-550.	0.9	54
214	UV-Visible Photodetector Based on I-type Heterostructure of ZnO-QDs/Monolayer MoS2. Nanoscale Research Letters, 2019, 14, 364.	3.1	54
215	Tellurene Nanoflake-Based NO ₂ Sensors with Superior Sensitivity and a Sub-Parts-per-Billion Detection Limit. ACS Applied Materials & Interfaces, 2020, 12, 47704-47713.	4.0	54
216	Stability of Perovskite Light Sources: Status and Challenges. Advanced Optical Materials, 2020, 8, 1902012.	3.6	54

#	Article	IF	CITATIONS
217	Emerging black phosphorus analogue nanomaterials for high-performance device applications. Journal of Materials Chemistry C, 2020, 8, 1172-1197.	2.7	54
218	Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. Reports on Progress in Physics, 2021, 84, 026401.	8.1	54
219	Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. Journal of Nanobiotechnology, 2021, 19, 160.	4.2	54
220	A Regioselectively Oxidized 2D Bi/BiOx Lateral Nanoâ€Heterostructure for Hypoxic Photodynamic Therapy. Advanced Materials, 2021, 33, e2102562.	11.1	54
221	EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer. International Journal of Nanomedicine, 2017, Volume 12, 6239-6257.	3.3	53
222	Black Phosphorus/Polymers: Status and Challenges. Advanced Materials, 2021, 33, e2100113.	11.1	53
223	Plasma-Assisted Sulfur Doping of LiMn ₂ O ₄ for High-Performance Lithium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 28776-28782.	1.5	52
224	Broadband Nonlinear Optical Response of InSe Nanosheets for the Pulse Generation From 1 to 2 μm. ACS Applied Materials & Interfaces, 2019, 11, 48281-48289.	4.0	51
225	Manipulating Charge and Energy Transfer between 2D Atomic Layers via Heterostructure Engineering. Nano Letters, 2020, 20, 5359-5366.	4.5	51
226	Robust SnO _{2â^'<i>x</i>} Nanoparticleâ€Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodiumâ€Ion Batteries. Angewandte Chemie, 2018, 130, 9039-9043.	1.6	50
227	Ultraâ€Small 2D PbS Nanoplatelets: Liquidâ€Phase Exfoliation and Emerging Applications for Photoâ€Electrochemical Photodetectors. Small, 2021, 17, e2005913.	5.2	50
228	(Q) -Switched Mode-Locked Nd:YVO ₄ Laser by Topological Insulator Bi ₂ Te ₃ Saturable Absorber. IEEE Photonics Technology Letters, 2014, 26, 1912-1915.	1.3	49
229	Graphene-Bi2Te3 Heterostructure as Broadband Saturable Absorber for Ultra-Short Pulse Generation in Er-Doped and Yb-Doped Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 195-199.	1.9	49
230	2D group-VA fluorinated antimonene: synthesis and saturable absorption. Nanoscale, 2019, 11, 1762-1769.	2.8	49
231	Transition Metal Dichalcogenides for Sensing and Oncotherapy: Status, Challenges, and Perspective. Advanced Functional Materials, 2021, 31, 2004408.	7.8	49
232	Selfâ€Healable Black Phosphorus Photodetectors. Advanced Functional Materials, 2019, 29, 1906610.	7.8	48
233	Boosting Lithium Storage in Free-Standing Black Phosphorus Anode via Multifunction of Nanocellulose. ACS Applied Materials & Interfaces, 2020, 12, 31628-31636.	4.0	48
234	Enhanced gas sensing properties of V ₂ O ₅ nanowires decorated with SnO ₂ nanoparticles to ethanol at room temperature. RSC Advances, 2015, 5, 41050-41058.	1.7	47

#	Article	IF	CITATIONS
235	Two-Dimensional Lead Monoxide: Facile Liquid Phase Exfoliation, Excellent Photoresponse Performance, and Theoretical Investigation. ACS Photonics, 2018, 5, 5055-5067.	3.2	47
236	Two-Dimensional Black Arsenic Phosphorus for Ultrafast Photonics in Near- and Mid-Infrared Regimes. ACS Applied Materials & Interfaces, 2020, 12, 46509-46518.	4.0	47
237	Optoelectronic Gas Sensor Based on Few-Layered InSe Nanosheets for NO ₂ Detection with Ultrahigh Antihumidity Ability. Analytical Chemistry, 2020, 92, 11277-11287.	3.2	47
238	Subwavelength-Polarized Quasi-Two-Dimensional Perovskite Single-Mode Nanolaser. ACS Nano, 2021, 15, 6900-6908.	7.3	47
239	Few-Layer Antimonene Nanosheet: A Metal-Free Bifunctional Electrocatalyst for Effective Water Splitting. ACS Applied Energy Materials, 2019, 2, 4774-4781.	2.5	46
240	Bladder drug mirabegron exacerbates atherosclerosis through activation of brown fat-mediated lipolysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10937-10942.	3.3	46
241	Optical Properties of Few-Layer Ti ₃ CN MXene: From Experimental Observations to Theoretical Calculations. ACS Nano, 2022, 16, 3059-3069.	7.3	46
242	Epitaxial Growth of Topological Insulators on Semiconductors (Bi ₂ Se ₃ /Te@Se) toward Highâ€Performance Photodetectors. Small Methods, 2019, 3, 1900349.	4.6	45
243	Van der Waals Integration of Bismuth Quantum Dots–Decorated Tellurium Nanotubes (Te@Bi) Heterojunctions and Plasmaâ€Enhanced Optoelectronic Applications. Small, 2019, 15, e1903233.	5.2	45
244	Tactile Chemomechanical Transduction Based on an Elastic Microstructured Array to Enhance the Sensitivity of Portable Biosensors. Advanced Materials, 2019, 31, e1803883.	11.1	45
245	Deepâ€Learningâ€Enabled MXeneâ€Based Artificial Throat: Toward Sound Detection and Speech Recognition. Advanced Materials Technologies, 2020, 5, 2000262.	3.0	45
246	Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser. Optics Communications, 2018, 406, 158-162.	1.0	44
247	Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: opportunities and challenges. Journal of Materials Chemistry A, 2019, 7, 25227-25246.	5.2	44
248	In Situ Surface Protection for Enhancing Stability and Performance of LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ at 4.8 V: The Working Mechanisms. , 2020, 2, 280-290.		44
249	2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. Materials Horizons, 2020, 7, 2903-2921.	6.4	44
250	Two Dimensional β-InSe with Layer-Dependent Properties: Band Alignment, Work Function and Optical Properties. Nanomaterials, 2019, 9, 82.	1.9	43
251	Siteâ€Selective Bi ₂ Te ₃ –FeTe ₂ Heterostructure as a Broadband Saturable Absorber for Ultrafast Photonics. Laser and Photonics Reviews, 2020, 14, 1900409.	4.4	43
252	Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 54621-54647.	4.0	43

#	Article	IF	CITATIONS
253	Black Phosphorus Quantum Dots as an Efficient Saturable Absorber for Bound Soliton Operation in an Erbium Doped Fiber Laser. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	42
254	Single frequency fiber laser based on an ultrathin metal–organic framework. Journal of Materials Chemistry C, 2019, 7, 4662-4666.	2.7	42
255	MXene Photonic Devices for Near-Infrared to Mid-Infrared Ultrashort Pulse Generation. ACS Applied Nano Materials, 2020, 3, 3513-3522.	2.4	42
256	2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioactive Materials, 2022, 14, 76-85.	8.6	42
257	Microfiber-Based Highly Nonlinear Topological Insulator Photonic Device for the Formation of Versatile Multi-Soliton Patterns in a Fiber Laser. Journal of Lightwave Technology, 2015, 33, 2056-2061.	2.7	41
258	Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous. Optics Express, 2016, 24, 2858.	1.7	41
259	Recent Advances in Twisted Structures of Flatland Materials and Crafting Moiré Superlattices. Advanced Functional Materials, 2020, 30, 2000878.	7.8	41
260	Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale, 2020, 12, 11364-11394.	2.8	41
261	Anisotropic Plasmonic Nanostructure Induced Polarization Photoresponse for MoS ₂ â€Based Photodetector. Advanced Materials Interfaces, 2020, 7, 1902179.	1.9	41
262	Engineering Lateral Heterojunction of Selenium oated Tellurium Nanomaterials toward Highly Efficient Solar Desalination. Advanced Science, 2019, 6, 1900531.	5.6	40
263	Electronic and Optical Properties of Two-Dimensional Tellurene: From First-Principles Calculations. Nanomaterials, 2019, 9, 1075.	1.9	40
264	Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications. Journal of Materials Chemistry C, 2020, 8, 12768-12794.	2.7	40
265	MXene (Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Science China Materials, 2021, 64, 259-265.	3.5	40
266	Booming development and present advances of two dimensional MXenes for photodetectors. Chemical Engineering Journal, 2021, 403, 126336.	6.6	40
267	Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Nanomedicine, 2018, 13, 1753-1772.	1.7	39
268	Synthesis Techniques, Optoelectronic Properties, and Broadband Photodetection of Thinâ€Film Black Phosphorus. Advanced Optical Materials, 2020, 8, 2000045.	3.6	39
269	Recent advances in black phosphorus/carbon hybrid composites: from improved stability to applications. Journal of Materials Chemistry A, 2020, 8, 4647-4676.	5.2	39
270	Allâ€Optical Control of Microfiber Knot Resonator Based on 2D Ti ₂ CT <i>_x</i> MXene. Advanced Optical Materials, 2020, 8, 1900977.	3.6	39

#	Article	IF	CITATIONS
271	Robust Aboveâ€Roomâ€Temperature Ferromagnetism in Few‣ayer Antimonene Triggered by Nonmagnetic Adatoms. Advanced Functional Materials, 2019, 29, 1808746.	7.8	38
272	Fe-doped mayenite electride composite with 2D reduced Graphene Oxide: As a non-platinum based, highly durable electrocatalyst for Oxygen Reduction Reaction. Scientific Reports, 2019, 9, 19809.	1.6	38
273	MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. Journal of Materials Chemistry B, 2021, 9, 5195-5220.	2.9	38
274	Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nature Communications, 2019, 10, 4062.	5.8	37
275	Inorganic 2D Luminescent Materials: Structure, Luminescence Modulation, and Applications. Advanced Optical Materials, 2020, 8, 1900978.	3.6	37
276	Sensing Applications of Atomically Thin Group IV Carbon Siblings Xenes: Progress, Challenges, and Prospects. Advanced Functional Materials, 2021, 31, 2005957.	7.8	37
277	Organosilicon modification to enhance the stability of black phosphorus nanosheets under ambient conditions. Journal of Materials Chemistry B, 2018, 6, 4065-4070.	2.9	36
278	A Robust 2D Photoâ€Electrochemical Detector Based on NiPS ₃ Flakes. Advanced Electronic Materials, 2019, 5, 1900726.	2.6	36
279	Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Research, 2020, 13, 1485-1508.	5.8	36
280	Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Research, 2020, 13, 891-918.	5.8	36
281	Wideband saturable absorption in metal–organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. Nanoscale, 2020, 12, 4586-4590.	2.8	36
282	2D Crystal–Based Fibers: Status and Challenges. Small, 2019, 15, e1902691.	5.2	35
283	Recent development and advances in Photodetectors based on two-dimensional topological insulators. Journal of Materials Chemistry C, 2020, 8, 15526-15574.	2.7	35
284	Recent Advances of Spatial Selfâ€Phase Modulation in 2D Materials and Passive Photonic Device Applications. Small, 2020, 16, e2002252.	5.2	35
285	Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors. Journal of Materials Chemistry C, 2020, 8, 7272-7299.	2.7	35
286	PbSe Nanocrystals Produced by Facile Liquid Phase Exfoliation for Efficient UV–Vis Photodetectors. Advanced Functional Materials, 2021, 31, 2010401.	7.8	35
287	Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 3447-3464.	5.7	35
288	Broadband, High‣ensitivity Graphene Photodetector Based on Ferroelectric Polarization of Lithium Niobate. Advanced Optical Materials, 2021, 9, 2100245.	3.6	35

#	Article	IF	CITATIONS
289	Defect Engineering in Ultrathin SnSe Nanosheets for High-Performance Optoelectronic Applications. ACS Applied Materials & Interfaces, 2021, 13, 33226-33236.	4.0	35
290	Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Reports on Progress in Physics, 2020, 83, 116401.	8.1	35
291	Novel Two-Dimensional Carbon–Chromium Nitride-Based Composite as an Electrocatalyst for Oxygen Reduction Reaction. Frontiers in Chemistry, 2019, 7, 738.	1.8	34
292	Emetine‣oaded Black Phosphorus Hydrogel Sensitizes Tumor to Photothermal Therapy through Inhibition of Stress Granule Formation. Advanced Functional Materials, 2020, 30, 2003891.	7.8	34
293	Fano Resonance in Artificial Photonic Molecules. Advanced Optical Materials, 2020, 8, 1902153.	3.6	34
294	Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm. Nanophotonics, 2018, 7, 1835-1843.	2.9	33
295	Halogenated Antimonene: Oneâ€Step Synthesis, Structural Simulation, Tunable Electronic and Photoresponse Property. Advanced Functional Materials, 2019, 29, 1905857.	7.8	33
296	Semiconducting quantum dots: Modification and applications in biomedical science. Science China Materials, 2020, 63, 1631-1650.	3.5	33
297	Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications. Journal of Materials Chemistry A, 2020, 8, 14356-14383.	5.2	33
298	Few-layer hexagonal bismuth telluride (Bi ₂ Te ₃) nanoplates with high-performance UV-Vis photodetection. Nanoscale Advances, 2020, 2, 1333-1339.	2.2	33
299	Emerging 2D pnictogens for catalytic applications: status and challenges. Journal of Materials Chemistry A, 2020, 8, 12887-12927.	5.2	32
300	Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials, 2021, 270, 120682.	5.7	32
301	Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer. Scientific Reports, 2015, 5, 8207.	1.6	30
302	Spontaneously Regenerative Tough Hydrogels. Angewandte Chemie - International Edition, 2019, 58, 10951-10955.	7.2	30
303	Low-Charge-Carrier-Scattering Three-Dimensional α-MnO ₂ /β-MnO ₂ Networks for Ultra-High-Rate Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2019, 2, 1051-1059.	2.5	30
304	Short-pulsed Raman fiber laser and its dynamics. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	30
305	Recent advances on TMDCs for medical diagnosis. Biomaterials, 2021, 269, 120471.	5.7	30
306	2D Materials for Nonlinear Photonics and Electroâ€Optical Applications. Advanced Materials Interfaces, 2021, 8, 2100367.	1.9	30

#	Article	IF	CITATIONS
307	A Highly Sensitive CRISPRâ€Empowered Surface Plasmon Resonance Sensor for Diagnosis of Inherited Diseases with Femtomolarâ€Level Realâ€Time Quantification. Advanced Science, 2022, 9, e2105231.	5.6	30
308	Polarization domain wall pulses in a microfiber-based topological insulator fiber laser. Scientific Reports, 2016, 6, 29128.	1.6	29
309	A Fully Integrated Flexible Tunable Chemical Sensor Based on Gold-Modified Indium Selenide Nanosheets. ACS Sensors, 2022, 7, 1183-1193.	4.0	29
310	Repression of Interlayer Recombination by Graphene Generates a Sensitive Nanostructured 2D vdW Heterostructure Based Photodetector. Advanced Science, 2021, 8, e2100503.	5.6	28
311	CdS@CdSe Core/Shell Quantum Dots for Highly Improved Self-Powered Photodetection Performance. Inorganic Chemistry, 2021, 60, 18608-18613.	1.9	28
312	Recent Advances in SnSe Nanostructures beyond Thermoelectricity. Advanced Functional Materials, 2022, 32, .	7.8	28
313	Dynamically Tuning the Up-conversion Luminescence of Er3+/Yb3+ Co-doped Sodium Niobate Nano-crystals through Magnetic Field. Scientific Reports, 2016, 6, 31327.	1.6	27
314	Plasma-enhanced low-temperature solid-state synthesis of spinel LiMn ₂ O ₄ with superior performance for lithium-ion batteries. Green Chemistry, 2016, 18, 662-666.	4.6	27
315	Defect Engineering in Fewâ€Layer Phosphorene. Small, 2018, 14, e1704556.	5.2	27
316	Facile Synthesis of Mayenite Electride Nanoparticles Encapsulated in Graphitic Shells Like Carbon Nano Onions: Non-noble-metal Electrocatalysts for Oxygen Reduction Reaction (ORR). Frontiers in Chemistry, 2019, 7, 934.	1.8	27
317	Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene–Bi ₂ Te ₃ heterostructure saturable absorber-based fiber laser. Optical Engineering, 2016, 55, 081314.	0.5	26
318	Graphene Heterostructure Integrated Optical Fiber Bragg Grating for Light Motion Tracking and Ultrabroadband Photodetection from 400 nm to 10.768 µm. Advanced Functional Materials, 2019, 29, 1807274.	7.8	26
319	BN as a Saturable Absorber for a Passively Modeâ€Locked 2 µm Solidâ€State Laser. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800482.	1.2	26
320	Highly Efficient Silicon Photonic Microheater Based on Black Arsenic–Phosphorus. Advanced Optical Materials, 2020, 8, 1901526.	3.6	26
321	Two-dimensional selenium and its composites for device applications. Nano Research, 2022, 15, 104-122.	5.8	26
322	Surface Coordination of Black Phosphorus with Modified Cisplatin. Bioconjugate Chemistry, 2019, 30, 1658-1664.	1.8	25
323	Smart Acidâ€Activatable Selfâ€Assembly of Black Phosphorous as Photosensitizer to Overcome Poor Tumor Retention in Photothermal Therapy. Advanced Functional Materials, 2020, 30, 2003338.	7.8	25
324	All-Optical Modulator Using MXene Inkjet-Printed Microring Resonator. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-6.	1.9	25

#	Article	IF	CITATIONS
325	Pulse duration dependent nonlinear optical response in black phosphorus dispersions. Optics Communications, 2018, 406, 244-248.	1.0	24
326	Facile liquid-phase exfoliated few-layer GeP nanosheets and their optoelectronic device applications. Journal of Materials Chemistry C, 2020, 8, 5547-5553.	2.7	24
327	Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, 9, 1973-1979.	2.9	24
328	Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: status and prospects. Nanophotonics, 2020, 9, 2603-2639.	2.9	24
329	Two-dimensional monoelemental germanene nanosheets: facile preparation and optoelectronic applications. Journal of Materials Chemistry C, 2020, 8, 16318-16325.	2.7	23
330	Infrared response in photocatalytic polymeric carbon nitride for water splitting via an upconversion mechanism. Communications Materials, 2020, 1, .	2.9	23
331	Recent progress, challenges, and prospects in emerging group-VIA Xenes: synthesis, properties and novel applications. Nanoscale, 2021, 13, 510-552.	2.8	23
332	An Insightful Picture of Nonlinear Photonics in 2DÂMaterials and their Applications: Recent Advances and Future Prospects. Advanced Optical Materials, 2021, 9, 2001671.	3.6	23
333	Recent Progress on Metalâ€Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics. Advanced Functional Materials, 2021, 31, 2107363.	7.8	23
334	2D materials for bone therapy. Advanced Drug Delivery Reviews, 2021, 178, 113970.	6.6	23
335	Facile Synthesis of 2D Tin Selenide for Near―and Midâ€Infrared Ultrafast Photonics Applications. Advanced Optical Materials, 2020, 8, 1902183.	3.6	23
336	The rise of 2D materials/ferroelectrics for next generation photonics and optoelectronics devices. APL Materials, 2022, 10, .	2.2	23
337	Tailoring nonlinear optical properties of Bi2Se3 through ion irradiation. Scientific Reports, 2016, 6, 21799.	1.6	22
338	Synthesis of Ultrathin Composition Graded Doped Lateral WSe2/WS2Heterostructures. ACS Applied Materials & Interfaces, 2017, 9, 34204-34212.	4.0	22
339	A self-encapsulated broadband phototransistor based on a hybrid of graphene and black phosphorus nanosheets. Nanoscale Advances, 2020, 2, 1059-1065.	2.2	22
340	Quantum confinement-induced enhanced nonlinearity and carrier lifetime modulation in two-dimensional tin sulfide. Nanophotonics, 2020, 9, 1963-1972.	2.9	22
341	Broadband saturable absorption in germanene for mode-locked Yb, Er, and Tm fiber lasers. Nanophotonics, 2022, 11, 3127-3137.	2.9	22
342	Stable Single-Longitudinal-Mode Fiber Ring Laser Using Topological Insulator-Based Saturable Absorber. Journal of Lightwave Technology, 2014, 32, 4438-4444.	2.7	21

#	Article	IF	CITATIONS
343	High-performance monolayer MoS ₂ photodetector enabled by oxide stress liner using scalable chemical vapor growth method. Nanophotonics, 2020, 9, 1981-1991.	2.9	21
344	Berlin Green Framework-Based Gas Sensor for Room-Temperature and High-Selectivity Detection of Ammonia. Nano-Micro Letters, 2021, 13, 63.	14.4	21
345	Recent Progresses in Integrated Nanoplasmonic Devices Based on Propagating Surface Plasmon Polaritons. Plasmonics, 2015, 10, 1841-1852.	1.8	20
346	Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition. Nature Communications, 2017, 8, 677.	5.8	20
347	Optical vortex fiber laser based on modulation of transverse modes in two mode fiber. APL Photonics, 2019, 4, .	3.0	20
348	Electrospun porous Fe ₂ O ₃ nanotubes as counter electrodes for dyeâ€sensitized solar cells. International Journal of Energy Research, 2019, 43, 5355-5366.	2.2	20
349	Recent advances in multiphoton microscopy combined with nanomaterials in the field of disease evolution and clinical applications to liver cancer. Nanoscale, 2019, 11, 19619-19635.	2.8	20
350	Band structure tuning of α-MoO ₃ by tin intercalation for ultrafast photonic applications. Nanoscale, 2020, 12, 23140-23149.	2.8	20
351	Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. Small, 2021, 17, e2005640.	5.2	20
352	Water-Dispersible CsPbBr3 Perovskite Nanocrystals with Ultra-Stability and its Application in Electrochemical CO2 Reduction. Nano-Micro Letters, 2021, 13, 172.	14.4	20
353	Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications. Progress in Solid State Chemistry, 2021, 63, 100326.	3.9	20
354	All-Optical Modulation Technology Based on 2D Layered Materials. Micromachines, 2022, 13, 92.	1.4	20
355	Tailoring polarization and magnetization of absorbing terahertz metamaterials using a cut-wire sandwich structure. Beilstein Journal of Nanotechnology, 2018, 9, 1437-1447.	1.5	19
356	Lowâ€Dimensional Black Phosphorus in Sensor Applications: Advances and Challenges. Advanced Functional Materials, 2021, 31, 2106484.	7.8	19
357	Bismuth quantum dots as an optical saturable absorber for a 13  μm Q-switched solid-state laser. Applic Optics, 2019, 58, 1621.	^{2d} 0.9	19
358	Recent development in graphdiyne and its derivative materials for novel biomedical applications. Journal of Materials Chemistry B, 2021, 9, 9461-9484.	2.9	19
359	Point and complex defects in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pd</mml:mi><mml:msub><mml:mi : Evolution of electronic structure and emergence of magnetism. Physical Review B, 2021, 104, .</mml:mi </mml:msub></mml:mrow></mml:math 	> £ ∉ <td>ի։ քց> < mml:n</td>	ի։ քց > < mml:n
360	MXene-Based Materials for Solar Cell Applications. Nanomaterials, 2021, 11, 3170.	1.9	19

#	Article	IF	CITATIONS
361	Electrochemical Analysis for Enhancing Interface Layer of Spinel LiNi0.5Mn1.5O4 Using p-Toluenesulfonyl Isocyanate as Electrolyte Additive. Frontiers in Chemistry, 2019, 7, 591.	1.8	18
362	Unveiling the Stimulated Robust Carrier Lifetime of Surfaceâ€Bound Excitons and Their Photoresponse in InSe. Advanced Materials Interfaces, 2019, 6, 1900171.	1.9	18
363	Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. Journal of Materials Chemistry C, 2020, 8, 4988-5014.	2.7	18
364	Black phosphorus as a versatile nanoplatform: From unique properties to biomedical applications. Journal of Innovative Optical Health Sciences, 2020, 13, .	0.5	18
365	Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). Materials Chemistry Frontiers, 2021, 5, 6333-6391.	3.2	18
366	Enhancing the saturable absorption and carrier dynamics of graphene with plasmonic nanowires. Physica Status Solidi (B): Basic Research, 2015, 252, 2159-2166.	0.7	17
367	Highly Efficient Super-Continuum Generation on an Epsilon-Near-Zero Surface. ACS Omega, 2020, 5, 2458-2464.	1.6	17
368	Ultrafast Surface Plasmon Resonance Imaging Sensor via the High-Precision Four-Parameter-Based Spectral Curve Readjusting Method. Analytical Chemistry, 2021, 93, 828-833.	3.2	17
369	Carbon coated to improve the electrochemical properties of LiMn2O4 cathode material synthesized by the novel acetone hydrothermal method. Applied Physics A: Materials Science and Processing, 2015, 119, 1069-1074.	1.1	16
370	Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 49281-49296.	4.0	16
371	A Facile Approach for Elementalâ€Doped Carbon Quantum Dots and Their Application for Efficient Photodetectors. Small, 2021, 17, e2105683.	5.2	16
372	A few-layer InSe-based sensitivity-enhanced photothermal fiber sensor. Journal of Materials Chemistry C, 2020, 8, 132-138.	2.7	15
373	Recent Advances in 2D Layered Phosphorous Compounds. Small Methods, 2021, 5, e2001068.	4.6	15
374	Quantum tunneling in two-dimensional van der Waals heterostructures and devices. Science China Materials, 2021, 64, 2359-2387.	3.5	15
375	A separator modified by high efficiency oxygen plasma for lithium ion batteries with superior performance. RSC Advances, 2015, 5, 92995-93001.	1.7	14
376	Photodetectors: Enhanced Photodetection Properties of Tellurium@Selenium Rollâ€ŧoâ€Roll Nanotube Heterojunctions (Small 23/2019). Small, 2019, 15, 1970125.	5.2	14
377	Surface Nonlinear Optics on Centrosymmetric Dirac Nodalâ€Line Semimetal ZrSiS. Advanced Materials, 2020, 32, e1904498.	11.1	14
378	Nanostructured metal nitrides for photocatalysts. Journal of Materials Chemistry C, 2021, 9, 5323-5342.	2.7	14

#	Article	IF	CITATIONS
379	2D GeP-based photonic device for near-infrared and mid-infrared ultrafast photonics. Nanophotonics, 2020, 9, 3645-3654.	2.9	14
380	Au Nanoparticle Modification Induces Charge-Transfer Channels to Enhance the Electrocatalytic Hydrogen Evolution Reaction of InSe Nanosheets. ACS Applied Materials & Interfaces, 2022, 14, 2908-2917.	4.0	14
381	Characteristics, properties, synthesis and advanced applications of 2D graphdiyne <i>versus</i> graphene. Materials Chemistry Frontiers, 2022, 6, 528-552.	3.2	14
382	Synergistic Photothermal and Chemical Therapy by Smart Dualâ€Functional Graphdiyne Nanosheets for Treatment of Parkinson's Disease. Advanced Therapeutics, 2021, 4, 2100082.	1.6	13
383	Plasma-assisted highly efficient synthesis of Li(Ni1/3Co1/3Mn1/3)O2 cathode materials with superior performance for Li-ion batteries. RSC Advances, 2015, 5, 75145-75148.	1.7	12
384	One-Pot Hydrothermal Synthesis of LiMn2O4 Cathode Material with Excellent High-Rate and Cycling Properties. Journal of Electronic Materials, 2016, 45, 4350-4356.	1.0	12
385	Flexible Li[Li0.2Ni0.13Co0.13Mn0.54]O2/Carbon Nanotubes/Nanofibrillated Celluloses Composite Electrode for High-Performance Lithium-Ion Battery. Frontiers in Chemistry, 2019, 7, 555.	1.8	12
386	A carob-inspired nanoscale design of yolk–shell Si@void@TiO ₂ -CNF composite as anode material for high-performance lithium-ion batteries. Dalton Transactions, 2019, 48, 6846-6852.	1.6	12
387	Control of dissipative rogue waves in nonlinear cavity optics: Optical injection and time-delayed feedback. Chaos, 2020, 30, 053103.	1.0	12
388	Magnetic black phosphorus microbubbles for targeted tumor theranostics. Nanophotonics, 2021, 10, 3339-3358.	2.9	12
389	Crystalline chirality and interlocked double hourglass Weyl fermion in polyhedra-intercalated transition metal dichalcogenides. NPG Asia Materials, 2021, 13, .	3.8	12
390	Recent Advance of Tellurium for Biomedical Applications. Chemical Research in Chinese Universities, 2020, 36, 551-559.	1.3	11
391	Engineering Monoâ€Chalcogen Nanomaterials for Omnipotent Anticancer Applications: Progress and Challenges. Advanced Healthcare Materials, 2020, 9, 2000273.	3.9	11
392	A nano-lateral heterojunction of selenium-coated tellurium for infrared-band soliton fiber lasers. Nanoscale, 2020, 12, 15252-15260.	2.8	11
393	Evolutional carrier mobility and power factor of two-dimensional tin telluride due to quantum size effects. Journal of Materials Chemistry C, 2020, 8, 4181-4191.	2.7	11
394	Tailoring the ultrafast and nonlinear photonics of MXenes through elemental replacement. Nanoscale, 2021, 13, 15891-15898.	2.8	11
395	Advances in photonics of recently developed Xenes. Nanophotonics, 2020, 9, 1621-1649.	2.9	11
396	Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Materials Today Bio, 2022, 14, 100236.	2.6	11

#	Article	IF	CITATIONS
397	Black Phosphorus: Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics (Adv. Mater. 1/2017). Advanced Materials, 2017, 29, .	11.1	10
398	Dual-wavelength dissipative solitons in an anomalous-dispersion-cavity fiber laser. Nanophotonics, 2020, 9, 2361-2366.	2.9	9
399	Goldâ€patterned microarray chips for ultrasensitive surfaceâ€enhanced Raman scattering detection of ultratrace samples. Journal of Raman Spectroscopy, 2019, 50, 26-33.	1.2	9
400	Broadband and ultrafast all-optical switching based on transition metal carbide. Nanophotonics, 2021, 10, 2617-2623.	2.9	9
401	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
402	Vanadium Disulfide Nanosheets Synthesized by Facile Liquidâ€Phase Exfoliation for Ammonia Detection with High Selectivity. Advanced Electronic Materials, 2022, 8, .	2.6	9
403	Spontaneously Regenerative Tough Hydrogels. Angewandte Chemie, 2019, 131, 11067-11071.	1.6	8
404	Multifunctional VI–VI binary heterostructure-based self-powered pH-sensitive photo-detector. Journal of Materials Chemistry C, 2020, 8, 5991-6000.	2.7	8
405	Colloidal semiconductor nanocrystals: synthesis, optical nonlinearity, and related device applications. Journal of Materials Chemistry C, 2021, 9, 6686-6721.	2.7	8
406	Autologous tumor antigens and boron nanosheet-based nanovaccines for enhanced photo-immunotherapy against immune desert tumors. Nanophotonics, 2021, 10, 2519-2535.	2.9	8
407	Frontiers in Electronic and Optoelectronic Devices Based on 2D Materials. Advanced Electronic Materials, 2021, 7, 2100444.	2.6	8
408	pH-responsive black phosphorus quantum dots for tumor-targeted photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102429.	1.3	8
409	Twoâ€Dimensional Nitrogenâ€Doped Ti ₃ C ₂ Promoted Catalysis Performance of Silver Nanozyme for Ultrasensitive Detection of Hydrogen Peroxide. ChemElectroChem, 2022, 9, .	1.7	8
410	Quantum Dots: Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots (Advanced Optical Materials 8/2016). Advanced Optical Materials, 2016, 4, 1222-1222.	3.6	7
411	Non-Isothermal Crystallization Kinetics of Polyamide 6/h-Boron Nitride Composites. Journal of Macromolecular Science - Physics, 2017, 56, 170-177.	0.4	7
412	Chiral Perovskite: Chiral Perovskites: Promising Materials toward Nextâ€Generation Optoelectronics (Small 39/2019). Small, 2019, 15, 1970209.	5.2	7
413	Graphdiyne nanosheets as a platform for accurate copper(<scp>ii</scp>) ion detection <i>via</i> click chemistry and fluorescence resonance energy transfer. RSC Advances, 2021, 11, 5320-5324.	1.7	7
414	Facile sonochemical-assisted synthesis of orthorhombic phase black phosphorus/rGO hybrids for effective photothermal therapy. Nanophotonics, 2020, 9, 3023-3034.	2.9	7

#	Article	IF	CITATIONS
415	Nanomaterials for neurodegenerative diseases: Molecular mechanisms guided design and applications. Nano Research, 2022, 15, 3299-3322.	5.8	7
416	Photodetectors Based on MoS ₂ /MAPbBr ₃ van der Waals Heterojunction. IEEE Electron Device Letters, 2022, 43, 414-417.	2.2	7
417	Phosphorene: From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics (Adv. Funct. Mater. 45/2015). Advanced Functional Materials, 2015, 25, 7100-7100.	7.8	6
418	Pulsed Lasers: Black Phosphorus-Polymer Composites for Pulsed Lasers (Advanced Optical Materials) Tj ETQqO O	0 rgBT /O\ 3.6	verlock 10 Tf
419	Characterization of Dark Soliton Sidebands in All-Normal-Dispersion Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	1.9	6
420	Artificial visual memory device based on a photo-memorizing composite and one-step manufacturing. Materials Horizons, 2020, 7, 1597-1604.	6.4	6
421	Density Functional Investigation on α-MoO ₃ (100): Amines Adsorption and Surface Chemistry. ACS Sensors, 2022, 7, 1213-1221.	4.0	6
422	Dynamics of broadband photoinduced species and enabled photodetection in MXenes. Nanophotonics, 2022, 11, 3139-3148.	2.9	6
423	Fiber all-optical light control with low-dimensional materials (LDMs): thermo-optic effect and saturable absorption. Nanoscale Advances, 2019, 1, 4190-4206.	2.2	5
424	Photodetectors: Graphdiyneâ€Based Flexible Photodetectors with High Responsivity and Detectivity (Adv. Mater. 23/2020). Advanced Materials, 2020, 32, 2070175.	11.1	5
425	Dynamic behaviors of multiple-soliton pulsation in an L-band passively mode-locked fiber laser with anomalous dispersion. Chaos, 2021, 31, 063122.	1.0	5
426	Controlled Generation of Bright or Dark Solitons in a Fiber Laser by Intracavity Nonlinear Absorber. IEEE Photonics Journal, 2016, 8, 1-12.	1.0	4
427	Photothermal Therapy: Metabolizable Ultrathin Bi2Se3Nanosheets in Imaging-Guided Photothermal Therapy (Small 30/2016). Small, 2016, 12, 4158-4158.	5.2	4
428	Photodetectors: Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Selfâ€₽owered Photodetector (Adv. Funct. Mater. 18/2017). Advanced Functional Materials, 2017, 27, .	7.8	4
429	Quantum Dots: Broadband Nonlinear Optical Response in Fewâ€Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability (Advanced Optical Materials) Tj ETQq1 1	. 0 .3.8 4314	l rgBT /Overlo
430	Cancer Theranostics: A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870268.	11.1	4
431	Ferri-chiral compounds with potentially switchable Dresselhaus spin splitting. Physical Review B, 2020, 102, .	1.1	4
432	2D Xenes: from fundamentals to applications. Nanophotonics, 2020, 9, 1555-1556.	2.9	4

#	Article	IF	CITATIONS
433	High-detectivity tin disulfide nanowire photodetectors with manipulation of localized ferroelectric polarization field. Nanophotonics, 2021, 10, 4637-4644.	2.9	4
434	All-Optical Signal Processing: Few-Layer Topological Insulator for All-Optical Signal Processing Using the Nonlinear Kerr Effect (Advanced Optical Materials 12/2015). Advanced Optical Materials, 2015, 3, 1768-1768.	3.6	3
435	Superior electrochemical properties of Li(Ni1/3Co1/3Mn1/3)O2/C synthesized by the precursor solid-phase method. Applied Physics A: Materials Science and Processing, 2015, 121, 23-28.	1.1	3
436	Nonlayered 2D Materials: Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability (Adv.) Tj ETQqO	0 0 .8 gBT /	Oværlock 10
437	Cancer Theranostics: Twoâ€Ðimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics (Adv. Mater. 38/2018). Advanced Materials, 2018, 30, 1870283.	11.1	3
438	Black Phosphorous Photodetectors: Black Phosphorous/Indium Selenide Photoconductive Detector for Visible and Nearâ€Infrared Light with High Sensitivity (Advanced Optical Materials 12/2019). Advanced Optical Materials, 2019, 7, 1970047.	3.6	3
439	Two-Dimensional Gold Halides: Novel Semiconductors with Giant Spin–Orbit Splitting and Tunable Optoelectronic Properties. Journal of Physical Chemistry Letters, 2020, 11, 9759-9765.	2.1	3
440	MXenes: MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics (Small 11/2021). Small, 2021, 17, 2170048.	5.2	3
441	An Assessment of MXenes through Scanning Probe Microscopy. Small Methods, 2022, 6, e2101599.	4.6	3
442	Spin-dependent k.p Hamiltonian of black phosphorene based on Löwdin partitioning method. Journal of Applied Physics, 2018, 124, 035702.	1.1	2
443	Optical Modulation: Fewâ€Layer Phosphoreneâ€Decorated Microfiber for Allâ€Optical Thresholding and Optical Modulation (Advanced Optical Materials 9/2017). Advanced Optical Materials, 2017, 5, .	3.6	1
444	Quantum Dots: Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application (Adv. Funct. Mater. 32/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
445	Innentitelbild: Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy (Angew. Chem. 39/2017). Angewandte Chemie, 2017, 129, 11816-11816.	1.6	1
446	Quantum Dots: Fluorination-Enhanced Ambient Stability and Electronic Tolerance of Black Phosphorus Quantum Dots (Adv. Sci. 9/2018). Advanced Science, 2018, 5, 1870055.	5.6	1
447	Miniâ€Generator Based on Selfâ€Propelled Vertical Motion of a Functionally Cooperating Device Driven by H ₂ â€Forming Reaction. Chemistry - an Asian Journal, 2019, 14, 2465-2471.	1.7	1
448	2D Ferromagnetism: Robust Aboveâ€Roomâ€Temperature Ferromagnetism in Fewâ€Layer Antimonene Triggered by Nonmagnetic Adatoms (Adv. Funct. Mater. 15/2019). Advanced Functional Materials, 2019, 29, 1970099.	7.8	1
449	Tailored negative/positive photoresponse of BP via doping. Nanotechnology, 2021, 32, 185201.	1.3	1
450	Recent Progress on Metalâ€Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics (Adv. Funct. Mater. 49/2021). Advanced Functional Materials, 2021, 31, 2170364.	7.8	1

#	Article	IF	CITATIONS
451	Pulsed Lasers: Pulsed Lasers Employing Solutionâ€Processed Plasmonic Cu _{3â"} <i>_x</i> P Colloidal Nanocrystals (Adv. Mater. 18/2016). Advanced Materials, 2016, 28, 3604-3604.	11.1	0
452	Ultrashort pulse generation in 2.1 l̂¼m spectral range using black phosphorus based saturable absorber. , 2017, , .		0
453	Titelbild: Robust SnO2â^'x Nanoparticle-Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodium-Ion Batteries (Angew. Chem. 29/2018). Angewandte Chemie, 2018, 130, 8919-8919.	1.6	0
454	A Facile Approach for Elementalâ€Đoped Carbon Quantum Dots and Their Application for Efficient Photodetectors (Small 52/2021). Small, 2021, 17, .	5.2	0