## Gregory A Wray

## List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/303483/gregory-a-wray-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67
papers

4,133
citations

26
h-index

89
ext. papers

5,080
ext. citations

8.5
avg, IF

L-index

| #  | Paper                                                                                                                                                                                                            | IF               | Citations                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|
| 67 | Extreme phenotypic divergence and the evolution of development <i>Current Topics in Developmental Biology</i> , <b>2022</b> , 146, 79-112                                                                        | 5.3              | Ο                           |
| 66 | TBX5-encoded T-box transcription factor 5 variant T223M is associated with long QT syndrome and pediatric sudden cardiac death. <i>American Journal of Medical Genetics, Part A</i> , <b>2021</b> , 185, 923-929 | 2.5              | 1                           |
| 65 | An early cell shape transition drives evolutionary expansion of the human forebrain. <i>Cell</i> , <b>2021</b> , 184, 20                                                                                         | 08 <u>4</u> 6210 | )2 <sub>4</sub> <b>⊵</b> 19 |
| 64 | Microbiome reduction and endosymbiont gain from a switch in sea urchin life history. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2021</b> , 118,                 | 11.5             | 4                           |
| 63 | The epidemiology of Plasmodium vivax among adults in the Democratic Republic of the Congo. <i>Nature Communications</i> , <b>2021</b> , 12, 4169                                                                 | 17.4             | 3                           |
| 62 | Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo. <i>Development (Cambridge)</i> , <b>2021</b> , 148,                                                                    | 6.6              | 9                           |
| 61 | Transcriptomic analysis of Nodal - and BMP- associated genes during development to the juvenile seastar in Parvulastra exigua (Asterinidae). <i>Marine Genomics</i> , <b>2021</b> , 59, 100857                   | 1.9              | O                           |
| 60 | Methodologies for Following EMT In Vivo at Single Cell Resolution. <i>Methods in Molecular Biology</i> , <b>2021</b> , 2179, 303-314                                                                             | 1.4              | 5                           |
| 59 | Transcriptomic analysis of sea star development through metamorphosis to the highly derived pentameral body plan with a focus on neural transcription factors. <i>DNA Research</i> , <b>2020</b> , 27,           | 4.5              | 4                           |
| 58 | Identifying branch-specific positive selection throughout the regulatory genome using an appropriate proxy neutral. <i>BMC Genomics</i> , <b>2020</b> , 21, 359                                                  | 4.5              | 1                           |
| 57 | Chromosomal-Level Genome Assembly of the Sea Urchin Lytechinus variegatus Substantially Improves Functional Genomic Analyses. <i>Genome Biology and Evolution</i> , <b>2020</b> , 12, 1080-1086                  | 3.9              | 10                          |
| 56 | Genetic basis for divergence in developmental gene expression in two closely related sea urchins. <i>Nature Ecology and Evolution</i> , <b>2020</b> , 4, 831-840                                                 | 12.3             | 3                           |
| 55 | Positive selection within the genomes of SARS-CoV-2 and other Coronaviruses independent of impact on protein function. <i>PeerJ</i> , <b>2020</b> , 8, e10234                                                    | 3.1              | 24                          |
| 54 | Conserved and divergent expression dynamics during early patterning of the telencephalon in mouse and chick embryos. <i>Progress in Neurobiology</i> , <b>2020</b> , 186, 101735                                 | 10.9             | 4                           |
| 53 | Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma. <i>Molecular Ecology</i> , <b>2020</b> , 29, 4618-4636                    | 5.7              | 5                           |
| 52 | Comparative Analyses of Chromatin Landscape in White Adipose Tissue Suggest Humans May Have Less Beigeing Potential than Other Primates. <i>Genome Biology and Evolution</i> , <b>2019</b> , 11, 1997-2008       | 3.9              | 9                           |
| 51 | A comparative analysis of egg provisioning using mass spectrometry during rapid life history evolution in sea urchins. <i>Evolution &amp; Development</i> , <b>2019</b> , 21, 188-204                            | 2.6              | 13                          |

| 50 | Rudolf A. Raff (1941-2019). Nature Ecology and Evolution, 2019, 3, 518-519                                                                                                                                                                         | 12.3 |     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 49 | Evaluating Chromatin Accessibility Differences Across Multiple Primate Species Using a Joint Modeling Approach. <i>Genome Biology and Evolution</i> , <b>2019</b> , 11, 3035-3053                                                                  | 3.9  | 3   |
| 48 | Embryo microinjection of the lecithotrophic sea urchin. <i>Journal of Biological Methods</i> , <b>2019</b> , 6, e119                                                                                                                               | 1.4  | 0   |
| 47 | Comparative Serum Challenges Show Divergent Patterns of Gene Expression and Open Chromatin in Human and Chimpanzee. <i>Genome Biology and Evolution</i> , <b>2018</b> , 10, 826-839                                                                | 3.9  | 8   |
| 46 | Expression of genes and proteins of the pax-six-eya-dach network in the metamorphic sea urchin: Insights into development of the enigmatic echinoderm body plan and sensory structures. <i>Developmental Dynamics</i> , <b>2018</b> , 247, 239-249 | 2.9  | 13  |
| 45 | Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. <i>Nature Communications</i> , <b>2018</b> , 9, 3121                                                                                                 | 17.4 | 74  |
| 44 | Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan. <i>BMC Developmental Biology</i> , <b>2017</b> , 17, 4                      | 3.1  | 9   |
| 43 | Gene expression and adaptive noncoding changes during human evolution. <i>BMC Genomics</i> , <b>2017</b> , 18, 435                                                                                                                                 | 4.5  | 9   |
| 42 | The phylogeny of extant starfish (Asteroidea: Echinodermata) including Xyloplax, based on comparative transcriptomics. <i>Molecular Phylogenetics and Evolution</i> , <b>2017</b> , 115, 161-170                                                   | 4.1  | 24  |
| 41 | Genomic Characterization of the Evolutionary Potential of the Sea Urchin Strongylocentrotus droebachiensis Facing Ocean Acidification. <i>Genome Biology and Evolution</i> , <b>2016</b> , 8, 3672-3684                                            | 3.9  | 9   |
| 40 | EchinoDB, an application for comparative transcriptomics of deeply-sampled clades of echinoderms. <i>BMC Bioinformatics</i> , <b>2016</b> , 17, 48                                                                                                 | 3.6  | 17  |
| 39 | Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene<br>Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. <i>PLoS</i><br><i>Biology</i> , <b>2016</b> , 14, e1002391    | 9.7  | 58  |
| 38 | Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees. <i>Genome Biology and Evolution</i> , <b>2015</b> , 7, 2276-88                                                                                     | 3.9  | 32  |
| 37 | Analysis of synaptic gene expression in the neocortex of primates reveals evolutionary changes in glutamatergic neurotransmission. <i>Cerebral Cortex</i> , <b>2015</b> , 25, 1596-607                                                             | 5.1  | 16  |
| 36 | Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma. <i>Marine Genomics</i> , <b>2015</b> , 24 Pt 1, 41-5                                                          | 1.9  | 8   |
| 35 | Molecular clocks and the early evolution of metazoan nervous systems. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , <b>2015</b> , 370,                                                                           | 5.8  | 31  |
| 34 | Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. <i>Current Biology</i> , <b>2015</b> , 25, 772-779                                                                                          | 6.3  | 142 |
| 33 | Genetic comparisons yield insight into the evolution of enamel thickness during human evolution.<br>Journal of Human Evolution, <b>2014</b> , 73, 75-87                                                                                            | 3.1  | 25  |

| 32 | Transcriptomic analysis of the highly derived radial body plan of a sea urchin. <i>Genome Biology and Evolution</i> , <b>2014</b> , 6, 964-73                                                            | 3.9                 | 21   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|
| 31 | Genomics and the Evolution of Phenotypic Traits. <i>Annual Review of Ecology, Evolution, and Systematics</i> , <b>2013</b> , 44, 51-72                                                                   | 13.5                | 52   |
| 30 | The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network. <i>PLoS Biology</i> , <b>2013</b> , 11, e1001696                                  | 9.7                 | 54   |
| 29 | Population genetics of cis-regulatory sequences that operate during embryonic development in the sea urchin Strongylocentrotus purpuratus. <i>Evolution &amp; Development</i> , <b>2012</b> , 14, 152-67 | 2.6                 | 18   |
| 28 | Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. <i>PLoS Genetics</i> , <b>2012</b> , 8, e1002789  | 6                   | 85   |
| 27 | Comparative expression analysis of the phosphocreatine circuit in extant primates: Implications for human brain evolution. <i>Journal of Human Evolution</i> , <b>2011</b> , 60, 205-212                 | 3.1                 | 21   |
| 26 | Evolution. CNCing is believing. <i>Science</i> , <b>2011</b> , 333, 946-7                                                                                                                                | 33.3                |      |
| 25 | Reply to <b>R</b> apidly evolving human promoter regions [INature Genetics, <b>2008</b> , 40, 1263-1264                                                                                                  | 36.3                | 1    |
| 24 | Genetics. Enhancing gene regulation. <i>Science</i> , <b>2008</b> , 321, 1300-1                                                                                                                          | 33.3                | 15   |
| 23 | Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. <i>Nature Genetics</i> , <b>2007</b> , 39, 1140-4                               | 36.3                | 221  |
| 22 | The evolutionary significance of cis-regulatory mutations. <i>Nature Reviews Genetics</i> , <b>2007</b> , 8, 206-16                                                                                      | 30.1                | 1062 |
| 21 | Ontogeny in the fossil record: diversification of body plans and the evolution of <code>Bberrant</code> symmetry in Paleozoic echinoderms. <i>Paleobiology</i> , <b>2007</b> , 33, 149-163               | 2.6                 | 72   |
| 20 | The evolution of embryonic gene expression in sea urchins. <i>Integrative and Comparative Biology</i> , <b>2006</b> , 46, 233-42                                                                         | 2.8                 | 4    |
| 19 | Tracing the ancestry of the great white shark, Carcharodon carcharias, using morphometric analyses of fossil teeth. <i>Journal of Vertebrate Paleontology</i> , <b>2006</b> , 26, 806-814                | 1.7                 | 27   |
| 18 | Molecular phylogeny of naidid worms (Annelida: Clitellata) based on cytochrome oxidase I. <i>Molecular Phylogenetics and Evolution</i> , <b>2004</b> , 30, 50-63                                         | 4.1                 | 101  |
| 17 | Culture of echinoderm larvae through metamorphosis. <i>Methods in Cell Biology</i> , <b>2004</b> , 74, 75-86                                                                                             | 1.8                 | 16   |
| 16 | The evolution of transcriptional regulation in eukaryotes. <i>Molecular Biology and Evolution</i> , <b>2003</b> , 20, 137                                                                                | ′8 <del>.4</del> 19 | 842  |
| 15 | Transcriptional regulation and the evolution of development. <i>International Journal of Developmental Biology</i> , <b>2003</b> , 47, 675-84                                                            | 1.9                 | 57   |

## LIST OF PUBLICATIONS

| 14 | Gene expression and larval evolution: changing roles of distal-less and orthodenticle in echinoderm larvae. <i>Evolution &amp; Development</i> , <b>2002</b> , 4, 111-23                                       | 2.6  | 44  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 13 | Do convergent developmental mechanisms underlie convergent phenotypes?. <i>Brain, Behavior and Evolution</i> , <b>2002</b> , 59, 327-36                                                                        | 1.5  | 27  |
| 12 | Dating branches on the tree of life using DNA. <i>Genome Biology</i> , <b>2002</b> , 3, REVIEWS0001                                                                                                            | 18.3 | 25  |
| 11 | Evolution of regeneration and fission in annelids: insights from engrailed- and orthodenticle-class gene expression. <i>Development (Cambridge)</i> , <b>2001</b> , 128, 2781-2791                             | 6.6  | 90  |
| 10 | Developmental regulatory genes and echinoderm evolution. Systematic Biology, 2000, 49, 28-51                                                                                                                   | 8.4  | 43  |
| 9  | The evolution of embryonic patterning mechanisms in animals. <i>Seminars in Cell and Developmental Biology</i> , <b>2000</b> , 11, 385-93                                                                      | 7.5  | 21  |
| 8  | Gene expression during echinoderm metamorphosis. <i>Zygote</i> , <b>1999</b> , 8, S48-S49                                                                                                                      | 1.6  |     |
| 7  | Parallel Evolution of Nonfeeding Larvae in Echinoids. <i>Systematic Biology</i> , <b>1996</b> , 45, 308-322                                                                                                    | 8.4  | 136 |
| 6  | RAPID EVOLUTION OF GASTRULATION MECHANISMS IN A SEA URCHIN WITH LECITHOTROPHIC LARVAE. <i>Evolution; International Journal of Organic Evolution</i> , <b>1991</b> , 45, 1741-1750                              | 3.8  | 41  |
| 5  | Mechanism of an Alternate Type of Echinoderm Blastula Formation: The Wrinkled Blastula of the Sea Urchin Heliocidaris erythrogramma. <i>Development Growth and Differentiation</i> , <b>1991</b> , 33, 317-328 | 3    | 28  |
| 4  | The evolution of developmental strategy in marine invertebrates. <i>Trends in Ecology and Evolution</i> , <b>1991</b> , 6, 45-50                                                                               | 10.9 | 140 |
| 3  | Rapid Evolution of Gastrulation Mechanisms in a Sea Urchin with Lecithotrophic Larvae. <i>Evolution;</i> International Journal of Organic Evolution, <b>1991</b> , 45, 1741                                    | 3.8  | 21  |
| 2  | Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma. <i>Developmental Biology</i> , <b>1990</b> , 141, 41-54                                                 | 3.1  | 112 |
| 1  | Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. <i>Developmental Biology</i> , <b>1989</b> , 132, 458-70                                             | 3.1  | 104 |