List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3034252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ambulance location and relocation models. European Journal of Operational Research, 2003, 147, 451-463.	3.5	601
2	Classical and modern heuristics for the vehicle routing problem. International Transactions in Operational Research, 2000, 7, 285-300.	1.8	520
3	Multi-objective vehicle routing problems. European Journal of Operational Research, 2008, 189, 293-309.	3.5	382
4	A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Computing, 2001, 27, 1641-1653.	1.3	360
5	Solving an ambulance location model by tabu search. Location Science, 1997, 5, 75-88.	0.2	295
6	Rich vehicle routing problems: From a taxonomy to a definition. European Journal of Operational Research, 2015, 241, 1-14.	3.5	217
7	The Covering Tour Problem. Operations Research, 1997, 45, 568-576.	1.2	188
8	A generalized linear programming model for nurse scheduling. European Journal of Operational Research, 1998, 107, 1-18.	3.5	188
9	Solving real-life vehicle routing problems efficiently using tabu search. Annals of Operations Research, 1993, 41, 469-488.	2.6	181
10	A tabu search heuristic for the undirected selective travelling salesman problem. European Journal of Operational Research, 1998, 106, 539-545.	3.5	174
11	The maximal expected coverage relocation problem for emergency vehicles. Journal of the Operational Research Society, 2006, 57, 22-28.	2.1	162
12	A branch-and-cut algorithm for the undirected selective traveling salesman problem. Networks, 1998, 32, 263-273.	1.6	132
13	An evolutionary algorithm for the vehicle routing problem with route balancing. European Journal of Operational Research, 2009, 195, 761-769.	3.5	107
14	Heuristics for the multi-vehicle covering tour problem. Computers and Operations Research, 2000, 27, 29-42.	2.4	100
15	Heuristics and lower bounds for the bin packing problem with conflicts. Computers and Operations Research, 2004, 31, 347-358.	2.4	94
16	Risk approaches for delivering disaster relief supplies. OR Spectrum, 2011, 33, 543-569.	2.1	91
17	A Covering Tour Model for Planning Mobile Health Care Facilities in SuhumDistrict, Ghama. Journal of Regional Science, 1998, 38, 621-638.	2.1	81
18	A multi-compartment vehicle routing problem arising in the collection of olive oil in Tunisia. Omega, 2015, 51, 1-10.	3.6	81

#	Article	IF	CITATIONS
19	The bi-objective covering tour problem. Computers and Operations Research, 2007, 34, 1929-1942.	2.4	65
20	Exact algorithms for the job sequencing and tool switching problem. IIE Transactions, 2004, 36, 37-45.	2.1	60
21	A two-phase algorithm for the partial accessibility constrained vehicle routing problem. Annals of Operations Research, 1995, 61, 45-65.	2.6	59
22	Parallel and Hybrid Models for Multi-objective Optimization: Application to the Vehicle Routing Problem. Lecture Notes in Computer Science, 2002, , 271-280.	1.0	52
23	Target aiming Pareto search and its application to the vehicle routing problem with route balancing. Journal of Heuristics, 2007, 13, 455-469.	1.1	52
24	Formulations and relaxations for a multi-echelon capacitated location–distribution problem. Computers and Operations Research, 2009, 36, 1335-1355.	2.4	51
25	Optimal sequencing of skip collections and deliveries. Journal of the Operational Research Society, 1997, 48, 57-64.	2.1	46
26	Enhancements of NSGA II and Its Application to the Vehicle Routing Problem with Route Balancing. Lecture Notes in Computer Science, 2006, , 131-142.	1.0	36
27	Adaptive large neighborhood search for the commodity constrained split delivery VRP. Computers and Operations Research, 2019, 112, 104761.	2.4	36
28	A 2-stage method for a field service routing problem with stochastic travel and service times. Computers and Operations Research, 2016, 65, 64-75.	2.4	33
29	A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem. INFORMS Journal on Computing, 2012, 24, 554-564.	1.0	31
30	Computational Evaluation Of A Transformation Procedure For The Symmetric Generalized Traveling Salesman Problem. Infor, 1999, 37, 114-120.	0.5	29
31	Application of the Double Standard Model for Ambulance Location. Lecture Notes in Economics and Mathematical Systems, 2009, , 235-249.	0.3	29
32	A bilevel programming approach to the travelling salesman problem. Operations Research Letters, 2004, 32, 240-248.	0.5	28
33	A Lagrangian-Based Branch-and-Bound Algorithm for the Two-Level Uncapacitated Facility Location Problem with Single-Assignment Constraints. Transportation Science, 2016, 50, 1286-1299.	2.6	25
34	Fast heuristics for large scale covering-location problems. Computers and Operations Research, 2002, 29, 651-665.	2.4	24
35	A branch-and-cut algorithm for the generalized traveling salesman problem with time windows. European Journal of Operational Research, 2020, 286, 849-866.	3.5	24
36	The Black and White Traveling Salesman Problem. Operations Research, 2006, 54, 366-378.	1.2	22

#	Article	IF	CITATIONS
37	A Benders decomposition-based approach for logistics service network design. European Journal of Operational Research, 2020, 286, 523-537.	3.5	22
38	A column generation based heuristic for the generalized vehicle routing problem with time windows. Transportation Research, Part E: Logistics and Transportation Review, 2021, 152, 102391.	3.7	22
39	A branch-and-cut algorithm for the truck dock assignment problem with operational time constraints. European Journal of Operational Research, 2016, 249, 1144-1152.	3.5	21
40	Branch-and-cut algorithms for the undirected m-Peripatetic Salesman Problem. European Journal of Operational Research, 2005, 162, 700-712.	3.5	19
41	Chapter 2: Classical Exact Algorithms for the Capacitated Vehicle Routing Problem. , 2014, , 37-57.		18
42	Heuristics for the black and white traveling salesman problem. Computers and Operations Research, 2003, 30, 75-85.	2.4	17
43	A note on the lifted Miller–Tucker–Zemlin subtour elimination constraints for routing problems with time windows. Operations Research Letters, 2020, 48, 167-169.	0.5	17
44	A branch-and-cut algorithm for the minimum labeling Hamiltonian cycle problem and two variants. Computers and Operations Research, 2011, 38, 1534-1542.	2.4	16
45	A time-expanded network reduction matheuristic for the logistics service network design problem. Transportation Research, Part E: Logistics and Transportation Review, 2021, 147, 102203.	3.7	15
46	A unified matheuristic for solving multi-constrained traveling salesman problems with profits. EURO Journal on Computational Optimization, 2017, 5, 393-422.	1.5	14
47	The Undirected <i>m</i> -Peripatetic Salesman Problem: Polyhedral Results and New Algorithms. Operations Research, 2007, 55, 949-965.	1.2	13
48	Estimation and determination of shortest path length in a road network with obstacles. European Journal of Operational Research, 1995, 83, 105-116.	3.5	10
49	A tiling and routing heuristic for the screening of cytological samples. Journal of the Operational Research Society, 1998, 49, 1233-1238.	2.1	10
50	Comparison of formulations for the two-level uncapacitated facility location problem with single assignment constraints. Computers and Operations Research, 2017, 86, 86-93.	2.4	10
51	Integrated Shift Scheduling and Load Assignment Optimization for Attended Home Delivery. Transportation Science, 2019, 53, 1150-1174.	2.6	9
52	The undirected m-Capacitated Peripatetic Salesman Problem. European Journal of Operational Research, 2012, 223, 637-643.	3.5	8
53	Multilayer variable neighborhood search for twoâ€level uncapacitated facility location problems with single assignment. Networks, 2015, 66, 214-234.	1.6	7
54	A sequential approach for a multi-commodity two-echelon distribution problem. Computers and Industrial Engineering, 2022, 163, 107793.	3.4	7

#	Article	IF	CITATIONS
55	Agriculture fleet vehicle routing: AÂdecentralised and dynamic problem. Al Communications, 2021, 34, 55-71.	0.8	6
56	A Heuristic Branch-Cut-and-Price Algorithm for the ROADEF/EURO Challenge on Inventory Routing. Transportation Science, 2020, 54, 313-329.	2.6	5
57	Mixed integer programming formulations for the generalized traveling salesman problem with time windows. 4or, 2021, 19, 571-592.	1.0	4
58	Heuristics for Rich Profitable Tour Problems. , 2013, , .		3
59	Meta partial benders decomposition for the logistics service network design problem. European Journal of Operational Research, 2022, 300, 473-489.	3.5	3
60	A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR THE COVERING TOUR PROBLEM. Advances in Natural Computation, 2004, , 247-267.	0.1	3
61	Heuristiques pour le Problème du Vendeurm-Péripatétique. RAIRO - Operations Research, 2009, 43, 13-26.	1.0	1
62	A tabu search with an oscillation strategy for the discriminant analysis problem. Computers and Operations Research, 2010, 37, 1688-1696.	2.4	1
63	A three-phase matheuristic for the Packaging and Shipping Problem. Applied Mathematical Modelling, 2018, 64, 713-732.	2.2	1
64	Models for Multimodal Freight Transportation Integrating Consolidation and Transportation Phases. , 2015, , .		1
65	An optimality cut for mixed integer linear programs. European Journal of Operational Research, 1999, 119, 671-677.	3.5	0

66 Design factors analysis for instances of rich vehicle routing problem., 2011,,.