Giampiero La Rocca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3034237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells International, 2022, 2022, 1-23.	2.5	8
2	Mitochondrial activity of human umbilical cord mesenchymal stem cells. Brain Circulation, 2021, 7, 33.	1.8	12
3	Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomedicine and Pharmacotherapy, 2021, 138, 111430.	5.6	102
4	Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions. Stem Cell Reviews and Reports, 2020, 16, 585-595.	3.8	13
5	The effect of Betanin parenteral pretreatment on Jejunal and pulmonary tissue histological architecture and inflammatory response after Jejunal ischemia-reperfusion injury. Experimental and Molecular Pathology, 2019, 110, 104292.	2.1	8
6	Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro. Stem Cell Reviews and Reports, 2019, 15, 900-918.	3.8	24
7	Wharton's Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood–derived CD34 ⁺ Cells Mimicking a Hematopoietic Niche in a Direct Cell–cell Contact Culture System. Cell Transplantation, 2018, 27, 117-129.	2.5	19
8	Mesenchymal Stromal Cells From Wharton's Jelly (WJ-MSCs). , 2018, , 271-279.		2
9	Immunomodulatory effects of stem cells: Therapeutic option for neurodegenerative disorders. Biomedicine and Pharmacotherapy, 2017, 91, 60-69.	5.6	24
10	Downregulation of myogenic microRNAs in sub-chronic but not in sub-acute model of daunorubicin-induced cardiomyopathy. Molecular and Cellular Biochemistry, 2017, 432, 79-89.	3.1	10
11	Wharton's Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review. Stem Cell Reviews and Reports, 2017, 13, 35-49.	5.6	20
12	Caffeine and cardiovascular diseases: critical review of current research. European Journal of Nutrition, 2016, 55, 1331-1343.	3.9	67
13	Hsp10 nuclear localization and changes in lung cells response to cigarette smoke suggest novel roles for this chaperonin. Open Biology, 2014, 4, 140125.	3.6	14
14	The Role of Intrinsic Pathway in Apoptosis Activation and Progression in Peyronie's Disease. BioMed Research International, 2014, 2014, 1-10.	1.9	77
15	Wharton's Jelly Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes. , 2014, , 313-323.		1
16	Isolation and Characterization of CD276+/HLA-E+ Human Subendocardial Mesenchymal Stem Cells from Chronic Heart Failure Patients: Analysis of Differentiative Potential and Immunomodulatory Markers Expression. Stem Cells and Development, 2013, 22, 1-17.	2.1	23
17	Hsp10 anatomic distribution functions and involvement in human disease. Frontiers in Bioscience - Elite, 2013, E5, 768-778.	1.8	25
18	Editorial from Guest Editor [Hot Topic Perinatal Stem Cells Revisited: Directions and Indications at the Crossroads Between Tissue Regeneration and Repair]. Current Stem Cell Research and Therapy, 2013, 8, 2-5	1.3	11

#	Article	IF	CITATIONS
19	Umbilical cord revisited: from Wharton's jelly myofibroblasts to mesenchymal stem cells. Histology and Histopathology, 2013, 28, 1235-44.	0.7	45
20	New Frontiers in Regenerative Medicine in Cardiology: The Potential of Wharton's Jelly Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2013, 8, 39-45.	1.3	30
21	Human Wharton's Jelly Mesenchymal Stem Cells Maintain the Expression of Key Immunomodulatory Molecules When Subjected to Osteogenic, Adipogenic and Chondrogenic Differentiation In Vitro: New Perspectives for Cellular Therapy. Current Stem Cell Research and Therapy, 2013, 8, 100-113.	1.3	77
22	Umbilical Cord Versus Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells and Development, 2012, 21, 2900-2903.	2.1	37
23	Novel Immunomodulatory Markers Expressed by Human WJ-MSC: an Updated Review in Regenerative and Reparative Medicine. The Open Tissue Engineering and Regenerative Medicine Journal, 2012, 5, 50-58.	2.6	32
24	Convergent Sets of Data from In Vivo and In Vitro Methods Point to an Active Role of Hsp60 in Chronic Obstructive Pulmonary Disease Pathogenesis. PLoS ONE, 2011, 6, e28200.	2.5	55
25	Wharton's Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes. Stem Cell Reviews and Reports, 2011, 7, 342-363.	5.6	135
26	Recent Patents and Advances on Isolation and Cellular Therapy Applications of Mesenchymal Stem Cells from Human Umbilical Cord Whartons Jelly. Recent Patents on Regenerative Medicine, 2011, 1, 216-227.	0.4	12
27	New Emerging Potentials for Human Wharton's Jelly Mesenchymal Stem Cells: Immunological Features and Hepatocyte-Like Differentiative Capacity. Stem Cells and Development, 2010, 19, 423-438.	2.1	192
28	Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: Current knowledge and perspectives. Life Sciences, 2010, 86, 145-152.	4.3	66
29	Role of oxidative and nitrosative stress biomarkers in chronic heart failure. Frontiers in Bioscience - Landmark, 2009, Volume, 2230.	3.0	58
30	Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 2009, 131, 267-282.	1.7	260
31	Oxidative stress induces myeloperoxidase expression in endocardial endothelial cells from patients with chronic heart failure. Basic Research in Cardiology, 2009, 104, 307-320.	5.9	59
32	Increased nitrotyrosine plasma levels in relation to systemic markers of inflammation and myeloperoxidase in chronic heart failure. International Journal of Cardiology, 2009, 135, 386-390.	1.7	37
33	Immunohistochemical Marker for Na+ CP Type Vα (C-20) and Heterozygous Nonsense SCN5A Mutation W822X in a Sudden Cardiac Death Induced by Mild Anaphylactic Reaction. Applied Immunohistochemistry and Molecular Morphology, 2009, 17, 357-362.	1.2	9
34	Role of endothelial cell stress in the pathogenesis of chronic heart failure. Frontiers in Bioscience - Landmark, 2009, Volume, 2238.	3.0	17
35	CD1a downâ€regulation in primary invasive ductal breast carcinoma may predict regional lymph node invasion and patient outcome. Histopathology, 2008, 52, 203-212.	2.9	31
36	Role of CD1A and HSP60 in the antitumoral response of oesophageal cancer. Oncology Reviews, 2008, 1, 225-232.	1.8	3

#	Article	IF	CITATIONS
37	Heterozygous nonsense SCN5A mutation W822X explains a simultaneous sudden infant death syndrome. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2008, 453, 209-216.	2.8	38
38	Hsp60 and Hsp10 as antitumour molecular agents. Cancer Biology and Therapy, 2007, 6, 487-489.	3.4	36
39	Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A) activity in human lung fibroblasts. Respiratory Research, 2007, 8, 23.	3.6	33
40	Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer, 2006, 107, 2417-2424.	4.1	87
41	CD1a and antitumour immune response. Immunology Letters, 2004, 95, 1-4.	2.5	28
42	Zymographic analysis of circulating and tissue forms of colon carcinoma gelatinase A (MMP-2) and B (MMP-9) separated by mono- and two-dimensional electrophoresis. Matrix Biology, 2001, 20, 419-427.	3.6	56