Michal Jablonsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033996/publications.pdf

Version: 2024-02-01

44 papers 995 citations

16 h-index 30 g-index

44 all docs 44 docs citations 44 times ranked 1399 citing authors

#	Article	IF	CITATIONS
1	Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. Journal of Biotechnology, 2018, 282, 46-66.	3.8	136
2	Deep Eutectic Solvents: Fractionation of Wheat Straw. BioResources, 2015, 10, .	1.0	87
3	Use of Deep Eutectic Solvents in Polymer Chemistry–A Review. Molecules, 2019, 24, 3978.	3.8	85
4	Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. Journal of Biotechnology, 2018, 282, 18-24.	3.8	59
5	Cellulose degradation in newsprint paper ageing. Polymer Degradation and Stability, 2009, 94, 1509-1514.	5.8	53
6	Valorisation of softwood bark through extraction of utilizable chemicals. A review. Biotechnology Advances, 2017, 35, 726-750.	11.7	53
7	Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose, 2019, 26, 3031-3045.	4.9	40
8	Chemical Composition and Thermal Behavior of Kraft Lignins. Forests, 2019, 10, 483.	2.1	38
9	Assessing the opportunities for applying deep eutectic solvents for fractionation of beech wood and wheat straw. Cellulose, 2019, 26, 7675-7684.	4.9	36
10	Deep eutectic solvent delignification: Impact of initial lignin. BioResources, 2017, 12, 7301-7310.	1.0	32
11	UV/Vis Spectrometry as a Quantification Tool for Lignin Solubilized in Deep Eutectic Solvents. BioResources, 2017, 12, .	1.0	28
12	Characterization of Non-wood Lignin Precipitated with Sulphuric Acid of Various Concentrations. BioResources, 2014, 10, .	1.0	25
13	Bioresource of Antioxidant and Potential Medicinal Compounds from Waste Biomass of Spruce. ACS Sustainable Chemistry and Engineering, 2017, 5, 8161-8170.	6.7	25
14	Long-term Isothermal Stability of Deep Eutectic Solvents. BioResources, 2018, 13, .	1.0	22
15	Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. Crystals, 2020, 10, 402.	2.2	20
16	Considerations on factors influencing the degradation of cellulose in alum-rosin sized paper. Carbohydrate Polymers, 2020, 245, 116534.	10.2	19
17	Composition of fatty acids and tocopherols in peels, seeds and leaves of Sea buckthorn. Acta Chimica Slovaca, 2017, 10, 29-34.	0.8	17
18	Oxidative degradation of paper – A minireview. Journal of Cultural Heritage, 2021, 48, 269-276.	3.3	16

#	Article	IF	Citations
19	Determination of the Thermal Oxidation Stability and the Kinetic Parameters of Commercial Extra Virgin Olive Oils from Different Varieties. Journal of Chemistry, 2019, 2019, 1-8.	1.9	14
20	Characterization of Klason lignins by reversed-phase high-performance liquid chromatography using wide-pore octadecylsilica and stepwise gradients of dimethylformamide in water. Journal of Separation Science, 2006, 29, 2179-2189.	2.5	13
21	Deep Eutectic Solvents as Medium for Pretreatment of Biomass. Key Engineering Materials, 0, 688, 17-24.	0.4	13
22	Influence of deodorization temperature on formation of tocopherol esters and fatty acids polymers in vegetable oil. European Journal of Lipid Science and Technology, 2017, 119, 1600027.	1.5	13
23	Spruce Barkâ€"A Source of Polyphenolic Compounds: Optimizing the Operating Conditions of Supercritical Carbon Dioxide Extraction. Molecules, 2019, 24, 4049.	3.8	13
24	Pharmacokinetic properties of biomass-extracted substances isolated by green solvents. BioResources, 2019, 14, 6294-6303.	1.0	13
25	Energy and chemical conversion of five Australian lignocellulosic feedstocks into bio-crude through liquefaction. RSC Advances, 2017, 7, 27707-27717.	3.6	11
26	Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations. Crystals, 2020, 10, 800.	2.2	10
27	Stability of Alum-Containing Paper under Alkaline Conditions. Molecules, 2020, 25, 5815.	3.8	10
28	Involvement of Deep Eutectic Solvents in Extraction by Molecularly Imprinted Polymersâ€"A Minireview. Crystals, 2020, 10, 217.	2.2	10
29	Antioxidant activity and the tocopherol and phenol contents of grape residues. BioResources, 2019, 14, 4146-4156.	1.0	10
30	Delignification of unbleached pulp by ternary deep eutectic solvents. Green Processing and Synthesis, 2021, 10, 666-676.	3.4	10
31	Cellulose Fibre Identification through Color Vectors of Stained Fibre. BioResources, 2015, 10, .	1.0	9
32	Yield of Polyphenolic Substances Extracted From Spruce (Picea abies) Bark by Microwave-Assisted Extraction. BioResources, 2016, 11 , .	1.0	9
33	Mechanical properties of pulp delignified by deep eutectic solvents. BioResources, 2017, 12, 7479-7486.	1.0	9
34	Screen-printed PEDOT:PSS/halloysite counter electrodes for dye-sensitized solar cells. Synthetic Metals, 2019, 256, 116148.	3.9	7
35	Physical properties and thermal behavior of novel ternary green solvents. Journal of Molecular Liquids, 2019, 287, 110991.	4.9	6
36	Optimization and application of green solvent extraction of natural bioactive coumarins from Lamiaceae and Asteraceae herbal plants. Journal of Molecular Liquids, 2021, 338, 116691.	4.9	6

#	Article	IF	CITATIONS
37	Molecular docking and machine learning affinity prediction of compounds identified upon softwood bark extraction to the main protease of the SARS-CoV-2 virus. Biophysical Chemistry, 2022, 288, 106854.	2.8	6
38	The Effect of Acetic and Formic Acid Formation during Accelerated Ageing on Embrittlement of Newsprint Paper. Restaurator, $2011,32,.$	0.2	3
39	Accelerated and Natural Aging of Cellulose-Based Paper: Py-GC/MS Method. Molecules, 2022, 27, 2855.	3.8	3
40	Comparison of Different Methods for Extraction from Lavender: Yield and Chemical Composition. Key Engineering Materials, 2016, 688, 31-37.	0.4	2
41	Stability of the Lignins and their Potential in Production of Bioplastics. Key Engineering Materials, 2016, 688, 25-30.	0.4	2
42	Cellulose Materials Identification: The Effect of Dimensionality of Colour Photography Data. BioResources, 2015, 11, .	1.0	1
43	Valorization of birch bark using a low transition temperature mixture composed of choline chloride and lactic acid. Green Processing and Synthesis, 2021, 10, 902-911.	3.4	1
44	Microwave-assisted Extraction of Spruce Bark: Statistical Optimization Using Box-Behnken Design. BioResources, 2018, 13, .	1.0	0