Emmanuelle Havis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/303385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TMEM8C-mediated fusion is regionalized and regulated by NOTCH signalling during foetal myogenesis. Development (Cambridge), 2022, 149, .	2.5	8
2	Egr1 loss-of-function promotes beige adipocyte differentiation and activation specifically in inguinal subcutaneous white adipose tissue. Scientific Reports, 2020, 10, 15842.	3.3	13
3	EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. International Journal of Molecular Sciences, 2020, 21, 1664.	4.1	313
4	Delivery of adiposeâ€derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration. Muscle and Nerve, 2018, 58, 251-260.	2.2	33
5	Characteristics and Immunomodulating Functions of Adipose-Derived and Bone Marrow-Derived Mesenchymal Stem Cells Across Defined Human Leukocyte Antigen Barriers. Frontiers in Immunology, 2018, 9, 1642.	4.8	59
6	Adipose stem cells enhance excisional wound healing in a porcine model. Journal of Surgical Research, 2018, 229, 243-253.	1.6	18
7	Egr1 deficiency induces browning of inguinal subcutaneous white adipose tissue in mice. Scientific Reports, 2017, 7, 16153.	3.3	22
8	Initiation of cyp26a1 Expression in the Zebrafish Anterior Neural Plate by a Novel Cis-Acting Element. PLoS ONE, 2016, 11, e0150639.	2.5	1
9	TGFβ and FGF promote tendon progenitor fate and act downstream of muscle contraction to regulate tendon differentiation during chick limb development. Development (Cambridge), 2016, 143, 3839-3851.	2.5	106
10	Transcriptomic analysis of mouse limb tendon cells during development. Development (Cambridge), 2014, 141, 3683-3696.	2.5	152
11	Junctional Neurulation: A Unique Developmental Program Shaping a Discrete Region of the Spinal Cord Highly Susceptible to Neural Tube Defects. Journal of Neuroscience, 2014, 34, 13208-13221.	3.6	77
12	Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. Journal of Clinical Investigation, 2013, 123, 3564-3576.	8.2	201
13	Sim2 prevents entry into the myogenic program by repressing <i>MyoD</i> transcription during limb embryonic myogenesis. Development (Cambridge), 2012, 139, 1910-1920.	2.5	33
14	ISL1 Directly Regulates FGF10 Transcription during Human Cardiac Outflow Formation. PLoS ONE, 2012, 7, e30677.	2.5	46
15	Specific Histone Lysine 4 Methylation Patterns Define TR-Binding Capacity and Differentiate Direct T3 Responses. Molecular Endocrinology, 2011, 25, 225-237.	3.7	55
16	EGR1 and EGR2 Involvement in Vertebrate Tendon Differentiation. Journal of Biological Chemistry, 2011, 286, 5855-5867.	3.4	178
17	A functional interaction between Irx and Meis patterns the anterior hindbrain and activates krox20 expression in rhombomere 3. Developmental Biology, 2009, 327, 566-577.	2.0	28
18	Rostral hindbrain patterning involves the direct activation of a Krox20 transcriptional enhancer by Hox/Pbx and Meis factors. Development (Cambridge), 2008, 135, 3369-3378.	2.5	34

EMMANUELLE HAVIS

#	Article	IF	CITATIONS
19	Whole embryo chromatin immunoprecipitation protocol for the in vivo study of zebrafish development. BioTechniques, 2006, 40, 34-40.	1.8	23
20	Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development. EMBO Journal, 2006, 25, 4943-4951.	7.8	66
21	Metamorphic T 3 â€response genes have specific coâ€regulator requirements. EMBO Reports, 2003, 4, 883-888.	4.5	59
22	Nuclear Receptor Corepressor Recruitment by Unliganded Thyroid Hormone Receptor in Gene Repression during Xenopus laevis Development. Molecular and Cellular Biology, 2002, 22, 8527-8538.	2.3	91