Hongxia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033795/publications.pdf

Version: 2024-02-01

687363 526287 28 749 13 27 citations h-index g-index papers 28 28 28 1161 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of cuprous oxide nanoparticles on graphitic carbon nitride and reduced graphene oxide and their catalytic performance toward the reduction of 4-nitrophenol. Journal of Materials Science, 2022, 57, 2424-2435.	3.7	5
2	\hat{l}^3 -Butyrolactone-Assisted Route for the Fast Synthesis of \hat{l}^2 -Zeolite and Its Application in the Alkylation of Benzene with Isobutylene. Industrial & Engineering Chemistry Research, 2022, 61, 403-412.	3.7	O
3	Exfoliation of graphitic carbon nitride and homogeneous loading of Cu2O catalyst. Solid State Sciences, 2022, 129, 106915.	3.2	4
4	MoS2 – induced hollow Cu2O spheres: Synthesis and efficient catalytic performance in the reduction of 4-nitrophenol by NaBH4. Applied Surface Science, 2021, 539, 148285.	6.1	26
5	Tuneable oxidation of styrene to benzaldehyde and benzoic acid over Co/ZSM-5. New Journal of Chemistry, 2021, 45, 18192-18201.	2.8	11
6	VOx-MoOy single molecular layer modified graphic carbon nitride polymer for enhanced selective styrene oxidation. Journal of Industrial and Engineering Chemistry, 2021, , .	5.8	3
7	N-methyl-2-pyrrolidone-induced conversion of USY into hollow Beta zeolite and its application in the alkylation of benzene with isobutylene. Microporous and Mesoporous Materials, 2020, 294, 109944.	4.4	11
8	Single transition metal atoms anchored on a C ₂ N monolayer as efficient catalysts for hydrazine electrooxidation. Physical Chemistry Chemical Physics, 2020, 22, 16691-16700.	2.8	12
9	SO42––Fe–V/ZrO2 Composite for Selective Oxidation of Styrene to Benzaldehyde in H2O2 Aqueous Solution. Industrial & Damp; Engineering Chemistry Research, 2020, 59, 4411-4418.	3.7	6
10	lonic Liquid Dispersed Ti/SBA-15 for Double-Bond Cleavage Oxidation of \hat{l}_{\pm} -Methylstyrene into Acetophenone. Catalysis Letters, 2019, 149, 3491-3500.	2.6	6
11	Heterostructures of doped graphene and MoX ₂ (X = S and Se) as promising anchoring materials for lithiumâ€ ^a sulfur batteries: a first-principles study. New Journal of Chemistry, 2019, 43, 9396-9402.	2.8	17
12	Doping MoS2 monolayer with nonmetal atoms to tune its electronic and magnetic properties, and chemical activity: a computational study. New Journal of Chemistry, 2019, 43, 5766-5772.	2.8	9
13	Direct synthesis of hollow single-crystalline zeolite beta using a small organic lactam as a recyclable hollow-directing agent. Journal of Materials Chemistry A, 2019, 7, 10795-10804.	10.3	25
14	Fabrication of reduced graphene oxide decorated with gold and nickel for the catalytic reduction of 4-nitrophenol. Journal of Materials Science, 2018, 53, 4874-4883.	3.7	24
15	Design and synthesis of surface-controlled CuOx/rGO nanocomposites with unusually high efficiency in catalytic conversion of organic reactants in the presence of NaBH4. Applied Surface Science, 2018, 459, 716-722.	6.1	28
16	Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 743-756.	1.7	18
17	Effect of acidic and red-ox sites over modified ZSM-5 surface on selectivity in oxidation of toluene. Molecular Catalysis, 2017, 442, 20-26.	2.0	12
18	Highly selective oxidation of methanol to dimethoxymethane over SO ₄ ^{2â^'} /V ₂ O ₅ â€"ZrO ₂ . New Journal of Chemistry, 2017, 41, 8370-8376.	2.8	11

#	Article	IF	CITATION
19	Immobilization of laccase from Pleurotus ostreatus on magnetic separable SiO2 support and excellent activity towards azo dye decolorization. Journal of Environmental Chemical Engineering, 2016, 4, 2585-2591.	6.7	37
20	Rapid Decolorization of Phenolic Azo Dyes by Immobilized Laccase with Fe ₃ O ₄ /SiO ₂ Nanoparticles as Support. Industrial & Engineering Chemistry Research, 2013, 52, 4401-4407.	3.7	75
21	Methane dehydro-aromatization over Mo/HZSM-5 catalysts in the absence of oxygen: Effect of steam-treatment on catalyst stability. Journal of Natural Gas Chemistry, 2011, 20, 547-552.	1.8	12
22	Precursor template synthesis of three-dimensional mesoporous ZnO hierarchical structures and their photocatalytic properties. CrystEngComm, 2010, 12, 2166.	2.6	67
23	Fabrication and catalytic tests of MCM-22/silicon carbide structured catalysts. Dalton Transactions, 2010, 39, 9705.	3.3	10
24	Experimental Study on Photocatalytic Activity of Cu2O/Cu Nanocomposites Under Visible Light. Catalysis Letters, 2009, 132, 75-80.	2.6	61
25	A Facile and Effective Method for the Distribution of Mo/HZSM-5 Catalyst Active Centers. Catalysis Letters, 2003, 89, 75-79.	2.6	7
26	Combined Single-Pass Conversion of Methane Via Oxidative Coupling and Dehydroaromatization. Catalysis Letters, 2003, 89, 275-279.	2.6	15
27	Creating Mesopores in ZSM-5 Zeolite by Alkali Treatment: A New Way to Enhance the Catalytic Performance of Methane Dehydroaromatization on Mo/HZSM-5 Catalysts. Catalysis Letters, 2003, 91, 155-167.	2.6	204
28	Post-steam-treatment of Mo/HZSM-5 Catalysts:Â An Alternative and Effective Approach for Enhancing Their Catalytic Performances of Methane Dehydroaromatization. Journal of Physical Chemistry B, 2003, 107, 12964-12972.	2.6	33