
William J Kerr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033425/publications.pdf Version: 2024-02-01

WILLIAM | KEDD

#	Article	IF	CITATIONS
1	Deuterium―and Tritium‣abelled Compounds: Applications in the Life Sciences. Angewandte Chemie - International Edition, 2018, 57, 1758-1784.	7.2	488
2	Câ^'H Functionalisation for Hydrogen Isotope Exchange. Angewandte Chemie - International Edition, 2018, 57, 3022-3047.	7.2	342
3	PROTAC-Mediated Degradation of Bruton's Tyrosine Kinase Is Inhibited by Covalent Binding. ACS Chemical Biology, 2019, 14, 342-347.	1.6	122
4	Iridium-Catalyzed C–H Activation and Deuteration of Primary Sulfonamides: An Experimental and Computational Study. ACS Catalysis, 2015, 5, 402-410.	5.5	121
5	Highly active iridium(i) complexes for catalytic hydrogen isotope exchange. Chemical Communications, 2008, , 1115.	2.2	120
6	The development and use of novel iridium complexes as catalysts for <i>ortho</i> â€directed hydrogen isotope exchange reactions. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 662-667.	0.5	107
7	The Synthesis of Highly Active Iridium(I) Complexes and their Application in Catalytic Hydrogen Isotope Exchange. Advanced Synthesis and Catalysis, 2014, 356, 3551-3562.	2.1	107
8	Highly Efficient Enantioselective Pauson-Khand Reactions. Organometallics, 1995, 14, 4986-4988.	1.1	83
9	Iridium atalyzed Formyl‣elective Deuteration of Aldehydes. Angewandte Chemie - International Edition, 2017, 56, 7808-7812.	7.2	81
10	Methoden der Câ€Hâ€Funktionalisierung für den Wasserstoffisotopenaustausch. Angewandte Chemie, 2018, 130, 3074-3101.	1.6	73
11	Iridium-catalysed ortho-H/D and -H/T exchange under basic conditions: C–H activation of unprotected tetrazoles. Chemical Communications, 2016, 52, 6669-6672.	2.2	72
12	Site-Selective Deuteration of <i>N</i> -Heterocycles via Iridium-Catalyzed Hydrogen Isotope Exchange. ACS Catalysis, 2017, 7, 7182-7186.	5.5	71
13	Expanded applicability of iridium(I) NHC/phosphine catalysts in hydrogen isotope exchange processes with pharmaceutically-relevant heterocycles. Tetrahedron, 2015, 71, 1924-1929.	1.0	68
14	Iridium-Catalyzed Csp ³ –H Activation for Mild and Selective Hydrogen Isotope Exchange. ACS Catalysis, 2018, 8, 10895-10900.	5.5	62
15	Development of modified Pauson-Khand reactions with ethylene and utilisation in the total synthesis of (+)-taylorione. Tetrahedron, 1996, 52, 7391-7420.	1.0	61
16	Enantioselective Pauson-Khand Reactions Mediated by a Chiral Amine N-Oxide. Synlett, 1995, 1995, 1085-1086.	1.0	51
17	The brucine N-oxide-promoted asymmetric Pauson–Khand reaction. Tetrahedron Letters, 2000, 41, 3229-3233.	0.7	50
18	Formal Total Synthesis of (±)-α- and β-Cedrene by Preparation of Cedrone. Construction of the Tricyclic Carbon Skeleton by the Use of a Highly Efficient Intramolecular Khand Annulation. Organic Letters, 2001, 3, 2945-2948.	2.4	47

WILLIAM J KERR

#	Article	IF	CITATIONS
19	Anion effects to deliver enhanced iridium catalysts for hydrogen isotope exchange processes. Organic and Biomolecular Chemistry, 2014, 12, 7927-7931.	1.5	46
20	Iridium(I) atalyzed Regioselective Cï£;H Activation and Hydrogenâ€Isotope Exchange of Nonâ€aromatic Unsaturated Functionality. Chemistry - A European Journal, 2014, 20, 14604-14607.	1.7	44
21	Application of neutral iridium(I) <i>N</i> â€heterocyclic carbene complexes in <i>ortho</i> â€directed hydrogen isotope exchange. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 451-454.	0.5	43
22	Enantioselective deprotonation reactions using a novel homochiral magnesium amide base. Chemical Communications, 2000, , 479-480.	2.2	41
23	Recent advances in iridium(I) catalysis towards directed hydrogen isotope exchange. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 281-295.	0.5	39
24	Modified Shapiro Reactions with Bismesitylmagnesium As an Efficient Base Reagent. Organic Letters, 2012, 14, 2250-2253.	2.4	38
25	Structure-Based Design of a Bromodomain and Extraterminal Domain (BET) Inhibitor Selective for the N-Terminal Bromodomains That Retains an Anti-inflammatory and Antiproliferative Phenotype. Journal of Medicinal Chemistry, 2020, 63, 9020-9044.	2.9	38
26	The utility of vinyl ethers and vinyl esters in the Khand reaction. The value of vinyl esters as ethylene equivalents and a modified synthesis of (+)-taylorione as an example. Journal of Organometallic Chemistry, 2001, 630, 104-117.	0.8	37
27	Ligand effects upon deuterium exchange in arenes mediated by[Ir(PR3)2(cod)]+.BF4â^'. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 1-10.	0.5	35
28	Bicyclic Cyclopentenones <i>via</i> the Combination of an Iridium―Catalyzed Allylic Substitution with a Diastereoselective Intramolecular Pauson–Khand Reaction. Advanced Synthesis and Catalysis, 2011, 353, 349-370.	2.1	33
29	Iridium-Catalysed ortho-Directed Deuterium Labelling of Aromatic Esters—An Experimental and Theoretical Study on Directing Group Chemoselectivity. Molecules, 2015, 20, 11676-11698.	1.7	30
30	Mild and Efficient N-Oxide Promoted Pauson-Khand Reactions with Ethylene. Synlett, 1995, 1995, 1083-1084.	1.0	29
31	Vinyl esters as ethylene equivalents in the Khand annulation reaction. Chemical Communications, 1999, , 2171-2172.	2.2	29
32	A polymer-supported alkyl methyl sulfide as an efficient promoter of the Khand cyclisation reaction. Chemical Communications, 2000, , 1467-1468.	2.2	29
33	Highly active iridium(i) complexes for the selective hydrogenation of carbon–carbon multiple bonds. Chemical Communications, 2011, 47, 11653.	2.2	29
34	Iridium(I) Nâ€Heterocyclic Carbene (NHC)/Phosphine Catalysts for Mild and Chemoselective Hydrogenation Processes. Chemistry - A European Journal, 2016, 22, 4738-4742.	1.7	28
35	Preparation of an amine N-oxide on solid phase: an efficient promoter of the Pauson–Khand reaction. Chemical Communications, 1999, , 2551-2552.	2.2	27
36	Preparation and reaction of desymmetrised cobalt alkyne complexes. Tetrahedron Letters, 2000, 41, 3235-3239.	0.7	25

WILLIAM J KERR

#	Article	IF	CITATIONS
37	Hydrogen isotope exchange with highly active iridium(I) NHC/phosphine complexes: a comparative counterion study. Journal of Labelled Compounds and Radiopharmaceuticals, 2016, 59, 601-603.	0.5	24
38	Iridium atalyzed Formyl‣elective Deuteration of Aldehydes. Angewandte Chemie, 2017, 129, 7916-7920.	1.6	22
39	Total synthesis of (+)-taylorione utilising modified Pauson–Khand reaction methodology. Journal of the Chemical Society Chemical Communications, 1995, , 457-458.	2.0	21
40	New odourless protocols for efficient Pauson–Khand annulations. Organic and Biomolecular Chemistry, 2005, 3, 2396.	1.5	20
41	Computationally-Guided Development of a Chelated NHC-P Iridium(I) Complex for the Directed Hydrogen Isotope Exchange of Aryl Sulfones. ACS Catalysis, 2020, 10, 11120-11126.	5.5	20
42	Behaviour of monocomplexed 1,4-diynes in the Khand reaction and use of ethylene equivalent techniques in a convenient route to tritium-labelled methyl jasmonate. Journal of Organometallic Chemistry, 2001, 630, 118-124.	0.8	19
43	Organic impurities, stable isotopes, or both: A comparison of instrumental and pattern recognition techniques for the profiling of 3,4-methylenedioxymethamphetamine. Analytical Methods, 2011, 3, 2279.	1.3	19
44	Enantioselective deprotonation reactions using polymer-supported chiral magnesium amide bases. Chemical Communications, 2001, , 1722-1723.	2.2	18
45	Stereochemical and mechanistic features of asymmetric Pauson–Khand processes. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 4366-4372.	1.3	15
46	A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology. Angewandte Chemie - International Edition, 2018, 57, 12126-12130.	7.2	15
47	Highly efficient methods for the one-pot synthesis of β-substituted enones. Organic and Biomolecular Chemistry, 2006, 4, 47-50.	1.5	14
48	Design, synthesis and antibacterial properties of pyrimido[4,5-b]indol-8-amine inhibitors of DNA gyrase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2998-3003.	1.0	14
49	In situ generation of Mes2Mg as a non-nucleophilic carbon-centred base reagent for the efficient one-pot conversion of ketones to silyl enol ethers. Organic and Biomolecular Chemistry, 2008, 6, 1238.	1.5	12
50	A quantitative empirical directing group scale for selectivity in iridium-catalysed hydrogen isotope exchange reactions. Catalysis Science and Technology, 2020, 10, 7249-7255.	2.1	12
51	Bismesitylmagnesium: a thermally stable and non-nucleophilic carbon-centred base reagent for the efficient preparation of silyl enol ethers. Chemical Communications, 2007, , 5049.	2.2	10
52	Catalyst design in C–H activation: a case study in the use of binding free energies to rationalise intramolecular directing group selectivity in iridium catalysis. Chemical Science, 2021, 12, 6747-6755.	3.7	9
53	Total synthesis 2-epi-α-cedren-3-one via a cobalt-catalysed Pauson-Khand reaction. Tetrahedron, 2018, 74, 5062-5068.	1.0	8
54	Isotopic Labelling of Functionalised Arenes Catalysed by Iridium(I) Species of the [(cod)Ir(NHC)(py)]PF6 Complex Class. Synlett, 2015, 27, 111-115.	1.0	7

WILLIAM J KERR

#	Article	IF	CITATIONS
55	Synthesis of $\hat{l}\pm$ -methylene propellanone via the strategic employment of metal-mediated cyclisation chemistry. Tetrahedron, 2015, 71, 5356-5361.	1.0	6
56	The Natural Product Lepidiline A as an N-Heterocyclic Carbene Ligand Precursor in Complexes of the Catalysis. Catalysts, 2020, 10, 161.	1.6	6
5 7	Profile of a Highly Selective Quaternized Pyrrolidine Betaine α _v l² ₆ Integrin Inhibitor—(3 <i>S</i>)-3-(3-(3,5-Dimethyl-1 <i>H</i> -pyrazol-1-yl)phenyl)-4-((1 <i>S</i> and) Tj ETQq1 1 0.78431 Synthesized by Stereoselective Methylation, Iournal of Medicinal Chemistry, 2019, 62, 7543-7556.	4 rgBT /(2.9	Overlock 10 T
58	A sustainable and scalable multicomponent continuous flow process to access fused imidazoheterocycle pharmacophores. Green Chemistry, 2021, 23, 280-287.	4.6	5
59	Efficient methods for enol phosphate synthesis using carbon-centred magnesium bases. Organic and Biomolecular Chemistry, 2015, 13, 10131-10135.	1.5	4
60	A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology. Angewandte Chemie, 2018, 130, 12302-12306.	1.6	4
61	Advances in the cobalt-catalysed Pauson-Khand reaction: Development of a sulfide-promoted, microwave-assisted protocol. Tetrahedron, 2021, 78, 131805.	1.0	4
62	Synthesis of Analogues of Methyl Jasmonate using the Formation of Cyclopentenones from Alkyne(hexacarbonyl)dicobalt Complexes. Journal of Chemical Research Synopses, 1998, , 636-637.	0.3	3
63	Regioselective Pauson-Khand Processes with Allylphosphonates as the Olefinic Partners. Synlett, 2005, 2005, 2023-2026.	1.0	3
64	Regioselective Pauson-Khand Processes with Olefins Possessing Extended Phosphonates. Synlett, 2010, 2010, 649-653.	1.0	3
65	Oxygenated Cyclopentenones via the Pauson–Khand Reaction of Silyl Enol Ether Substrates. Organic Letters, 2022, 24, 2750-2755.	2.4	3
66	Clustering behaviour of polyaromatic compounds mimicking natural asphaltenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125221.	2.3	2
67	Are rate and selectivity correlated in iridium-catalysed hydrogen isotope exchange reactions?. Catalysis Science and Technology, 2021, 11, 5498-5504.	2.1	2
68	Total Synthesis of Japanese Hop Ether Using an Efficient Intramolecular Pauson-Khand Reaction. Synthesis, 2005, 2005, 3293-3296.	1.2	1
69	Synthesis of [³ H] and [¹⁴ C]genipin. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 196-202.	0.5	1