Joseph Ogas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033419/publications.pdf Version: 2024-02-01

LOSEDH OCAS

#	Article	IF	CITATIONS
1	Scientific Research Identity Development Need Not Wait Until College: Examining the Motivational Impact of a Pre-college Authentic Research Experience. Research in Science Education, 2022, 52, 1481-1496.	2.3	8
2	Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Seminars in Cell and Developmental Biology, 2022, , .	5.0	7
3	CHD Chromatin Remodeling Protein Diversification Yields Novel Clades and Domains Absent in Classic Model Organisms. Genome Biology and Evolution, 2022, 14, .	2.5	3
4	Overexpression of arogenate dehydratase reveals an upstream point of metabolic control in phenylalanine biosynthesis. Plant Journal, 2021, 108, 737-751.	5.7	12
5	Examining the Role of the chromatin remodeler CHD5 in Tumor Suppression and Neural Differentiation in Zebrafish. FASEB Journal, 2020, 34, 1-1.	0.5	0
6	Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio . Journal of Visualized Experiments, 2018, , .	0.3	16
7	The Chromatin Remodelers PKL and PIE1 Act in an Epigenetic Pathway That Determines H3K27me3 Homeostasis in Arabidopsis. Plant Cell, 2018, 30, 1337-1352.	6.6	97
8	Gibberellin Signaling Requires Chromatin Remodeler PICKLE to Promote Vegetative Growth and Phase Transitions. Plant Physiology, 2017, 173, 1463-1474.	4.8	55
9	The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNA-directed DNA methylation loci. Genome Biology, 2017, 18, 103.	8.8	44
10	Perturbation of H3K27me3-Associated Epigenetic Processes Increases <i>Agrobacterium</i> -Mediated Transformation. Molecular Plant-Microbe Interactions, 2017, 30, 35-44.	2.6	7
11	Cross-Talk Between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in <i>Arabidopsis thaliana</i> . Genetics, 2016, 203, 817-829.	2.9	16
12	Immediate chromatin immunoprecipitation and on-bead quantitative PCR analysis: a versatile and rapid ChIP procedure. Nucleic Acids Research, 2015, 43, e38-e38.	14.5	9
13	The chromatin remodeler chd5 is necessary for proper head development during embryogenesis of Danio rerio. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1040-1050.	1.9	10
14	PICKLE is a CHD subfamily II ATP-dependent chromatin remodeling factor. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 199-210.	1.9	61
15	The CHD3 Remodeler PICKLE Associates with Genes Enriched for Trimethylation of Histone H3 Lysine 27 Â Â. Plant Physiology, 2012, 159, 418-432.	4.8	144
16	An Epigenetic Perspective on Developmental Regulation of Seed Genes. Molecular Plant, 2009, 2, 610-627.	8.3	61
17	A mixture model approach for the analysis of small exploratory microarray experiments. Computational Statistics and Data Analysis, 2009, 53, 1566-1576.	1.2	5
18	The CHD3 Remodeler PICKLE Promotes Trimethylation of Histone H3 Lysine 27. Journal of Biological Chemistry, 2008, 283, 22637-22648.	3.4	131

JOSEPH OGAS

#	Article	IF	CITATIONS
19	Preface to special issue on plant chromatin: Structure and expression. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 267-268.	2.4	Ο
20	PICKLE acts during germination to repress expression of embryonic traits. Plant Journal, 2005, 44, 1010-1022.	5.7	85
21	PICKLE Acts throughout the Plant to Repress Expression of Embryonic Traits and May Play a Role in Gibberellin-Dependent Responses. Plant Physiology, 2004, 134, 995-1005.	4.8	148
22	Light induces phenylpropanoid metabolism inArabidopsisroots. Plant Journal, 2004, 38, 765-778.	5.7	220
23	Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biology, 2004, 4, 17.	3.6	261
24	Metabolic profiling of the Arabidopsis pkl mutant reveals selective derepression of embryonic traits. Planta, 2004, 219, 489-499.	3.2	39
25	Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant Journal, 2003, 35, 33-43.	5.7	180
26	Gibberellins. Current Biology, 2000, 10, R48.	3.9	7
27	PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13839-13844.	7.1	468
28	Plant hormones: Dissecting the gibberellin response pathway. Current Biology, 1998, 8, R165-R167.	3.9	18
29	Cellular Differentiation Regulated by Gibberellin in theArabidopsis thaliana pickleMutant. Science, 1997, 277, 91-94.	12.6	327
30	Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science, 1994, 266, 1388-1391.	12.6	162
31	The PCL2 (ORFD)-PHO85 cyclin-dependent kinase complex: a cell cycle regulator in yeast. Science, 1994, 266, 1391-1395.	12.6	179
32	Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell, 1991, 66, 1015-1026.	28.9	342
33	Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SW14, a positive regulator of G1-specific transcription. Trends in Cell Biology, 1991, 1, 151.	7.9	6
34	Regulators of Synthesis and Activity of the G1 Cyclins of Budding Yeast. Cold Spring Harbor Symposia on Quantitative Biology, 1991, 56, 33-40.	1.1	2