Ian Hastings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033404/publications.pdf

Version: 2024-02-01

101543 144013 3,955 109 36 57 citations h-index g-index papers 117 117 117 3803 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Variation in Calculating and Reporting Antimalarial Efficacy against Plasmodium falciparum in Sub-Saharan Africa: A Systematic Review of Published Reports. American Journal of Tropical Medicine and Hygiene, 2021, 104, 1820-1829.	1.4	13
2	Should Deep-Sequenced Amplicons Become the New Gold Standard for Analyzing Malaria Drug Clinical Trials?. Antimicrobial Agents and Chemotherapy, 2021, 65, e0043721.	3.2	10
3	PCR correction strategies for malaria drug trials: updates and clarifications. Lancet Infectious Diseases, The, 2020, 20, e20-e25.	9.1	21
4	Incorporating genetic selection into individualâ€based models of malaria and other infectious diseases. Evolutionary Applications, 2020, 13, 2723-2739.	3.1	7
5	A Computer Modelling Approach To Evaluate the Accuracy of Microsatellite Markers for Classification of Recurrent Infections during Routine Monitoring of Antimalarial Drug Efficacy. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	15
6	The role of windows of selection and windows of dominance in the evolution of insecticide resistance in human disease vectors. Evolutionary Applications, 2020, 13, 738-751.	3.1	16
7	Effectiveness of intermittent preventive treatment in pregnancy with sulfadoxine-pyrimethamine: An in silico pharmacological model. Asian Pacific Journal of Tropical Medicine, 2020, 13, 366.	0.8	1
8	Improving Methods for Analyzing Antimalarial Drug Efficacy Trials: Molecular Correction Based on Length-Polymorphic Markers <i>msp-1</i> , <i>msp-2</i> , and <i>glurp</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	19
9	Optimal Treatments for Severe Malaria and the Threat Posed by Artemisinin Resistance. Journal of Infectious Diseases, 2019, 219, 1243-1253.	4.0	8
10	Insecticide resistance evolution with mixtures and sequences: a model-based explanation. Malaria Journal, 2018, 17, 80.	2.3	35
11	Modelling the impact of insecticide-based control interventions on the evolution of insecticide resistance and disease transmission. Parasites and Vectors, 2018, 11, 482.	2.5	20
12	A Two-Locus Model of the Evolution of Insecticide Resistance to Inform and Optimise Public Health Insecticide Deployment Strategies. PLoS Computational Biology, 2017, 13, e1005327.	3.2	26
13	Markov chain Monte Carlo and expectation maximization approaches for estimation of haplotype frequencies for multiply infected human blood samples. Malaria Journal, 2016, 15, 430.	2.3	9
14	Incorporating Stage-Specific Drug Action into Pharmacological Modeling of Antimalarial Drug Treatment. Antimicrobial Agents and Chemotherapy, 2016, 60, 2747-2756.	3.2	26
15	Quantifying the pharmacology of antimalarial drug combination therapy. Scientific Reports, 2016, 6, 32762.	3.3	14
16	The Importance of Scientific Debate in the Identification, Containment, and Control of Artemisinin Resistance. Clinical Infectious Diseases, 2016, 63, 1527.1-1528.	5.8	9
17	Reply to "Parasite Strain, Host Immunity, and Circulating Blood Cells with Dead Parasites: Why Predicting Malaria Parasite Clearance Is Not a Simple Task― Antimicrobial Agents and Chemotherapy, 2016, 60, 1173-1174.	3.2	0
18	Measuring windows of selection for anti-malarial drug treatments. Malaria Journal, 2015, 14, 292.	2.3	21

#	Article	lF	Citations
19	Mathematical Models of Human African Trypanosomiasis Epidemiology. Advances in Parasitology, 2015, 87, 53-133.	3.2	27
20	Altering Antimalarial Drug Regimens May Dramatically Enhance and Restore Drug Effectiveness. Antimicrobial Agents and Chemotherapy, 2015, 59, 6419-6427.	3.2	29
21	How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?. Antimicrobial Agents and Chemotherapy, 2015, 59, 6428-6436.	3.2	59
22	Tsetse Control and Gambian Sleeping Sickness; Implications for Control Strategy. PLoS Neglected Tropical Diseases, 2015, 9, e0003822.	3.0	108
23	Improving the Role and Contribution of Pharmacokinetic Analyses in Antimalarial Drug Clinical Trials. Antimicrobial Agents and Chemotherapy, 2014, 58, 5643-5649.	3.2	7
24	Optimizing the programmatic deployment of the anti-malarials artemether-lumefantrine and dihydroartemisinin-piperaquine using pharmacological modelling. Malaria Journal, 2014, 13, 138.	2.3	23
25	Pharmacological considerations in the design of anti-malarial drug combination therapies – is matching half-lives enough?. Malaria Journal, 2014, 13, 62.	2.3	24
26	Improving Pharmacokinetic-Pharmacodynamic Modeling to Investigate Anti-Infective Chemotherapy with Application to the Current Generation of Antimalarial Drugs. PLoS Computational Biology, 2013, 9, e1003151.	3.2	31
27	THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA. Evolution; International Journal of Organic Evolution, 2013, 67, 1218-1230.	2.3	253
28	Analysing malaria drug trials on a perâ€individual or perâ€clone basis: a comparison of methods. Statistics in Medicine, 2013, 32, 3020-3038.	1.6	16
29	Policy options for deploying anti-malarial drugs in endemic countries: a population genetics approach. Malaria Journal, 2012, 11, 422.	2.3	13
30	Entomological indices of malaria transmission in Chikhwawa district, Southern Malawi. Malaria Journal, 2012, 11, 380.	2.3	50
31	The importance of modelling the spread of insecticide resistance in a heterogeneous environment: the example of adding synergists to bed nets. Malaria Journal, 2012, 11, 258.	2.3	25
32	An in silico drug treatment model to assess the robustness of regional age-based dosing regimens for artemisinin-based combination therapies. Malaria Journal, $2012, 11, \ldots$	2.3	1
33	Estimating the window of selection of antimalarial drugs using field data. Malaria Journal, 2012, 11, .	2.3	0
34	The genetic polymorphism of Plasmodium vivax genes in endemic regions of Thailand. Asian Pacific Journal of Tropical Medicine, 2011, 4, 931-936.	0.8	14
35	Prediction of hospital mortality from admission laboratory data and patient age: A simple model. EMA - Emergency Medicine Australasia, 2011, 23, 354-363.	1.1	40
36	How artemisinin-containing combination therapies slow the spread of antimalarial drug resistance. Trends in Parasitology, 2011, 27, 67-72.	3.3	51

#	Article	IF	Citations
37	Why we should effectively treat malaria. Trends in Parasitology, 2011, 27, 51-52.	3.3	9
38	ogaraK: a population genetics simulator for malaria. Bioinformatics, 2011, 27, 1335-1336.	4.1	4
39	Environmental, pharmacological and genetic influences on the spread of drug-resistant malaria. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1705-1712.	2.6	28
40	Development, Evaluation, and Application of an <i>In Silico</i> Model for Antimalarial Drug Treatment and Failure. Antimicrobial Agents and Chemotherapy, 2011, 55, 3380-3392.	3.2	39
41	Challenges in Estimating Insecticide Selection Pressures from Mosquito Field Data. PLoS Neglected Tropical Diseases, 2011, 5, e1387.	3.0	27
42	Leukocytosis as an alarming sign for mortality in patients hospitalized in general wards. Iranian Journal of Medical Sciences, 2011, 36, 45-9.	0.4	6
43	Plasmodium falciparum resistance to anti-malarial drugs in Papua New Guinea: evaluation of a community-based approach for the molecular monitoring of resistance. Malaria Journal, 2010, 9, 8.	2.3	21
44	Quantifying the Evolution and Impact of Antimalarial Drug Resistance: Drug Use, Spread of Resistance, and Drug Failure over a 12‥ear Period in Papua New Guinea. Journal of Infectious Diseases, 2010, 201, 435-443.	4.0	28
45	A Comparison of Methods to Detect and Quantify the Markers of Antimalarial Drug Resistance. American Journal of Tropical Medicine and Hygiene, 2010, 83, 489-495.	1.4	39
46	Field, Genetic, and Modeling Approaches Show Strong Positive Selection Acting upon an Insecticide Resistance Mutation in Anopheles gambiae s.s Molecular Biology and Evolution, 2010, 27, 1117-1125.	8.9	88
47	Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies. Expert Review of Anti-Infective Therapy, 2009, 7, 581-593.	4.4	49
48	ORIGINAL ARTICLE: Probability of emergence of antimalarial resistance in different stages of the parasite life cycle. Evolutionary Applications, 2009, 2, 52-61.	3.1	40
49	MalHaploFreq: A computer programme for estimating malaria haplotype frequencies from blood samples. Malaria Journal, 2008, 7, 130.	2.3	34
50	Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies. Malaria Journal, 2008, 7, 229.	2.3	87
51	The spread of antimalarial drug resistance: A mathematical model with practical implications for ACT drug policies. Nature Precedings, 2008, , .	0.1	0
52	Laboratory risk factors for hospital mortality in acutely admitted patients. QJM - Monthly Journal of the Association of Physicians, 2007, 100, 501-507.	0.5	58
53	Continued correspondence †Will ART rollout in Africa drive an epidemic of drug-resistant HIV?'. Aids, 2007, 21, 258-259.	2.2	1
54	Increased postpartum blood loss in pregnancies associated with placental malaria. International Journal of Gynecology and Obstetrics, 2007, 96, 171-175.	2.3	12

#	Article	IF	Citations
55	Antimalarial drugs and pregnancy: safety, pharmacokinetics, and pharmacovigilance. Lancet Infectious Diseases, The, 2007, 7, 136-144.	9.1	136
56	The anatomy of a malaria disaster: drug policy choice and mortality in African children. Lancet Infectious Diseases, The, 2007, 7, 739-748.	9.1	25
57	Climate prediction of El Niño malaria epidemics in north-west Tanzania. Malaria Journal, 2007, 6, 162.	2.3	48
58	"Sexual―Population Structure and Genetics of the Malaria Agent P. falciparum. PLoS ONE, 2007, 2, e613.	2.5	47
59	Molecular markers as indicators of antimalarial drug failure rates. Tropical Medicine and International Health, 2007, 12, 1298-1301.	2.3	7
60	The impact of endemic and epidemic malaria on the risk of stillbirth in two areas of Tanzania with different malaria transmission patterns. Malaria Journal, 2006, 5, 89.	2.3	22
61	Complex dynamics and stability of resistance to antimalarial drugs. Parasitology, 2006, 132, 615-24.	1.5	59
62	PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX. Molecular Microbiology, 2006, 62, 238-251.	2.5	85
63	Gametocytocidal activity in antimalarial drugs speeds the spread of drug resistance. Tropical Medicine and International Health, 2006, 11, 1206-1217.	2.3	18
64	No room for complacency on drug resistance in Africa. Nature, 2006, 444, 31-31.	27.8	2
65	Tolerance is the key to understanding antimalarial drug resistance. Trends in Parasitology, 2006, 22, 71-77.	3.3	76
66	Response to Coles: Drug resistance and drug tolerance in parasites. Trends in Parasitology, 2006, 22, 349.	3.3	0
67	Will ART rollout in Africa drive an epidemic of drug resistant HIV?. Aids, 2006, 20, 1354-1356.	2.2	7
68	Malaria and Irrigated Crops, Accra, Ghana. Emerging Infectious Diseases, 2005, 11, 1290-1293.	4.3	80
69	Coartem (Artemetherâ€Lumefantrine) in Africa: The Beginning of the End?. Journal of Infectious Diseases, 2005, 192, 1303-1304.	4.0	61
70	Antibiotic Chemotherapy of Onchocerciasis: In a Bovine Model, Killing of Adult Parasites Requires a Sustained Depletion of Endosymbiotic Bacteria (WolbachiaSpecies). Journal of Infectious Diseases, 2005, 192, 1483-1493.	4.0	57
71	The impact of antimalarial drug resistance mutations on parasite fitness, and its implications for the evolution of resistance. Drug Resistance Updates, 2005, 8, 43-50.	14.4	67
72	Intensity of malaria transmission and the evolution of drug resistance. Acta Tropica, 2005, 94, 218-229.	2.0	74

#	Article	IF	CITATIONS
73	THE SEARCH FOR EFFECTIVE AND SUSTAINABLE TREATMENTS FOR PLASMODIUM FALCIPARUM MALARIA IN AFRICA: A MODEL OF THE SELECTION OF RESISTANCE BY ANTIFOLATE DRUGS AND THEIR COMBINATIONS. American Journal of Tropical Medicine and Hygiene, 2005, 72, 163-173.	1.4	37
74	The search for effective and sustainable treatments for Plasmodium falciparum malaria in Africa: a model of the selection of resistance by antifolate drugs and their combinations. American Journal of Tropical Medicine and Hygiene, 2005, 72, 163-73.	1.4	17
7 5	Impact of El Nino and malaria on birthweight in two areas of Tanzania with different malaria transmission patterns. International Journal of Epidemiology, 2004, 33, 1311-1319.	1.9	19
76	Male-specific insecticide resistance and mosquito transgene dispersal. Trends in Parasitology, 2004, 20, 413-416.	3.3	4
77	The origins of antimalarial drug resistance. Trends in Parasitology, 2004, 20, 512-518.	3.3	100
78	Can mutation and selection explain virulence in human P. falciparum infections?. Malaria Journal, 2004, 3, 2.	2.3	16
79	Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae. Malaria Journal, 2004, $3,1.$	2.3	110
80	ANTIMALARIAL DRUG RESISTANCE, ARTEMISININ-BASED COMBINATION THERAPY, AND THE CONTRIBUTION OF MODELING TO ELUCIDATING POLICY CHOICES. American Journal of Tropical Medicine and Hygiene, 2004, 71, 179-186.	1.4	148
81	Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. American Journal of Tropical Medicine and Hygiene, 2004, 71, 179-86.	1.4	64
82	Malaria control and the evolution of drug resistance: an intriguing link. Trends in Parasitology, 2003, 19, 70-73.	3.3	64
83	Response to: The puzzling links between malaria transmission level and drug resistance. Trends in Parasitology, 2003, 19, 160-161.	3.3	6
84	Intensity of transmission and spread of gene mutations linked to chloroquine and sulphadoxine-pyrimethamine resistance in falciparum malaria. International Journal for Parasitology, 2003, 33, 1051-1058.	3.1	40
85	The evolution of drug–resistant malaria: the role of drug elimination half–life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 505-519.	4.0	170
86	The Plasmodium falciparum var gene switching rate, switching mechanism and patterns of parasite recrudescence described by mathematical modelling. Parasitology, 2002, 124, 225-235.	1.5	57
87	A Requiem for Chloroquine. Science, 2002, 298, 74-75.	12.6	57
88	A Lifetime Perspective on Foraging and Mortality. Journal of Theoretical Biology, 2002, 215, 385-397.	1.7	14
89	Modelling parasite drug resistance: lessons for management and control strategies. Tropical Medicine and International Health, 2001, 6, 883-890.	2.3	49
90	Genetics and malaria – more questions than answers. Trends in Parasitology, 2001, 17, 55-56.	3.3	5

#	Article	IF	Citations
91	Reproductive compensation and human genetic disease. Genetical Research, 2001, 77, 277-83.	0.9	10
92	American Society of Tropical Medicine and Hygiene-49th annual meeting. IDrugs: the Investigational Drugs Journal, 2001, 4, 47-9.	0.7	0
93	Models of human genetic disease: how biased are the standard formulae?. Genetical Research, 2000, 75, 107-114.	0.9	19
94	Mutation and selection within the individual. Genetica, 1998, 102/103, 507-524.	1.1	90
95	Effects of thyroid hormone deficiency on mice selected for increased and decreased body weight and fatness. Genetical Research, 1998, 72, 39-53.	0.9	9
96	Effects of thyroid hormone deficiency on mice selected for increased and decreased body weight and fatness. Genetical Research, 1998, 72, 59-72.	0.9	0
97	The effect of testosterone in mice divergently selected on fat content or body weight. Genetical Research, 1997, 70, 135-141.	0.9	8
98	Prenatal growth in lines of mice selected for body weight. Journal of Animal Breeding and Genetics, 1996, 113, 535-543.	2.0	1
99	Behavioural changes as a correlated response to selection. Genetical Research, 1995, 66, 27-33.	0.9	8
100	The genetic basis of response in mouse lines divergently selected for body weight or fat content. I. The relative contributions of autosomal and sex-linked genes. Genetical Research, 1993, 62, 169-175.	0.9	22
101	The genetic basis of response in mouse lines divergently selected for body weight or fat content. II. The contribution of genes with a large effect. Genetical Research, 1993, 62, 177-182.	0.9	9
102	The role of growth hormone in lines of mice divergently selected on body weight. Genetical Research, 1993, 61, 101-106.	0.9	18
103	Population genetic aspects of deleterious cytoplasmic genomes and their effect on the evolution of sexual reproduction. Genetical Research, 1992, 59, 215-225.	0.9	106
104	Why is sex so frequent?. Trends in Ecology and Evolution, 1992, 7, 278-279.	8.7	12
105	The population genetics of alleles affecting enzyme activity. Journal of Theoretical Biology, 1992, 157, 305-316.	1.7	10
106	Analysis of lines of mice selected on fat content: 4. Correlated responses in growth and reproduction. Genetical Research, 1991, 58, 253-259.	0.9	18
107	Analysis of lines of mice selected for fat content. 2. Correlated responses in the activities of enzymes involved in lipogenesis. Genetical Research, 1990, 55, 55-61.	0.9	30
108	Monoclonal antibodies to human hypoglossal nucleus which stain neurons and astrocytes in normal brains and brains from cases of Alzheimer-type dementia. Neuroscience, 1986, 18, 183-191.	2.3	1

#	Article	IF	CITATIONS
109	The influence of biological, epidemiological, and treatment factors on the establishment and spread of drug-resistant Plasmodium falciparum. ELife, 0, 11 , .	6.0	14