Johannes Charlier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gastrointestinal Nematode Infections in Adult Dairy Cattle. , 2022, , 297-302.		0
2	Anthelmintic resistance in ruminants: challenges and solutions. Advances in Parasitology, 2022, 115, 171-227.	1.4	46
3	Confounding factors affecting faecal egg count reduction as a measure of anthelmintic efficacy. Parasite, 2022, 29, 20.	0.8	19
4	Use of agro-industrial by-products containing tannins for the integrated control of gastrointestinal nematodes in ruminants. Parasite, 2022, 29, 10.	0.8	14
5	Construction of generic roadmaps for the strategic coordination of global research into infectious diseases of animals and zoonoses. Transboundary and Emerging Diseases, 2021, 68, 1513-1520.	1.3	8
6	Resistance of strongylid nematodes to anthelmintic drugs and driving factors at Czech goat farms. BMC Veterinary Research, 2021, 17, 106.	0.7	9
7	Risk factors for lungworm-associated milk yield losses in grazing dairy cattle. Veterinary Parasitology, 2021, 292, 109414.	0.7	3
8	Quantifying the Interrelationship between Livestock Infections and Climate Change: Response to Ezenwa et al Trends in Ecology and Evolution, 2021, 36, 576-577.	4.2	4
9	Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Preventive Veterinary Medicine, 2020, 182, 105103.	0.7	176
10	Increasing importance of anthelmintic resistance in European livestock: creation and meta-analysis of an open database. Parasite, 2020, 27, 69.	0.8	110
11	Association between Dictyocaulus viviparus bulk tank milk antibody levels and farmer-reported lungworm outbreaks. Veterinary Parasitology, 2020, 288, 109280.	0.7	5
12	GLOWORM-PARA: a flexible framework to simulate the population dynamics of the parasitic phase of gastrointestinal nematodes infecting grazing livestock. International Journal for Parasitology, 2020, 50, 133-144.	1.3	9
13	Biology and Epidemiology of Gastrointestinal Nematodes in Cattle. Veterinary Clinics of North America - Food Animal Practice, 2020, 36, 1-15.	0.5	35
14	A Qualitative Market Analysis Applied to Mini-FLOTAC and Fill-FLOTAC for Diagnosis of Helminth Infections in Ruminants. Frontiers in Veterinary Science, 2020, 7, 580649.	0.9	6
15	Assessment of anthelmintic efficacy against cattle gastrointestinal nematodes in western France and southern Italy. Journal of Helminthology, 2020, 94, e125.	0.4	4
16	Rapid assessment of faecal egg count and faecal egg count reduction through composite sampling in cattle. Parasites and Vectors, 2019, 12, 353.	1.0	16
17	100 Questions in Livestock Helminthology Research. Trends in Parasitology, 2019, 35, 52-71.	1.5	54
18	Beliefs, intentions, and beyond: A qualitative study on the adoption of sustainable gastrointestinal nematode control practices in Flanders' dairy industry. Preventive Veterinary Medicine, 2018, 153, 15-23.	0.7	25

#	Article	IF	CITATIONS
19	Control of helminth ruminant infections by 2030. Parasitology, 2018, 145, 1655-1664.	0.7	97
20	Mind the gaps in research on the control of gastrointestinal nematodes of farmed ruminants and pigs. Transboundary and Emerging Diseases, 2018, 65, 217-234.	1.3	68
21	Risk factors for the presence of Fasciola hepatica antibodies in bulk-milk samples and their association with milk production decreases, in Cuban dairy cattle. BMC Veterinary Research, 2018, 14, 336.	0.7	10
22	Farmer Behavior and Gastrointestinal Nematodes in Ruminant Livestock—Uptake of Sustainable Control Approaches. Frontiers in Veterinary Science, 2018, 5, 255.	0.9	50
23	DISCONTOOLS supplement: Current research gaps for advancing control of infectious diseases in production animals. Transboundary and Emerging Diseases, 2018, 65, 5-8.	1.3	10
24	Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transboundary and Emerging Diseases, 2018, 65, 199-216.	1.3	126
25	Effects of anthelmintic treatment and feed supplementation on parasite infections and morbidity parameters in Cambodian cattle. Veterinary Parasitology, 2017, 235, 113-122.	0.7	0
26	Economic modelling of grazing management against gastrointestinal nematodes in dairy cattle. Veterinary Parasitology, 2017, 236, 68-75.	0.7	8
27	A multi-country study to assess the effect of a treatment with moxidectin pour-on during the dry period on milk production in dairy cows. Veterinary Parasitology, 2017, 237, 104-109.	0.7	3
28	Economic assessment of Ostertagia ostertagi and Fasciola hepatica infections in dairy cattle herds in Germany using Paracalc ®. Veterinary Parasitology, 2017, 240, 39-48.	0.7	23
29	How Advanced Efficiency Techniques Can Support Production Disease Control Decisions on Dairy Farms. EuroChoices, 2017, 16, 47-53.	0.6	2
30	Gastrointestinal Nematode Infections in Adult Dairy Cattle. , 2016, , .		1
31	Antibodies against Dictyocaulus viviparus major sperm protein in bulk tank milk: Association with clinical appearance, herd management and milk production. Veterinary Parasitology, 2016, 232, 36-42.	0.7	18
32	DISCONTOOLS: a database to identify research gaps on vaccines, pharmaceuticals and diagnostics for the control of infectious diseases of animals. BMC Veterinary Research, 2016, 13, 1.	0.7	101
33	Pooling sheep faecal samples for the assessment of anthelmintic drug efficacy using McMaster and Mini-FLOTAC in gastrointestinal strongyle and Nematodirus infection. Veterinary Parasitology, 2016, 225, 53-60.	0.7	25
34	Modelling Cooperia oncophora : Quantification of key parameters in the parasitic phase. Veterinary Parasitology, 2016, 223, 111-114.	0.7	15
35	The relation between input-output transformation and gastrointestinal nematode infections on dairy farms. Animal, 2016, 10, 274-282.	1.3	15
36	Development and validation of a meat juice ELISA for the diagnosis of Fasciola hepatica in cattle in Cuba. Asian Pacific Journal of Tropical Disease, 2016, 6, 622-626.	0.5	0

#	Article	IF	CITATIONS
37	Climate-driven longitudinal trends in pasture-borne helminth infections of dairy cattle. International Journal for Parasitology, 2016, 46, 881-888.	1.3	32
38	New perspectives on research. Veterinary Record, 2016, 179, i-ii.	0.2	0
39	Cattle and Nematodes Under Global Change: Transmission Models as an Ally. Trends in Parasitology, 2016, 32, 724-738.	1.5	38
40	Decision making on helminths in cattle: diagnostics, economics and human behaviour. Irish Veterinary Journal, 2015, 69, 14.	0.8	40
41	Mapping and modelling helminth infections in ruminants in Europe: experience from GLOWORM. Geospatial Health, 2015, 9, 257.	0.3	14
42	Modelling the spatial distribution of Fasciola hepatica in dairy cattle in Europe. Geospatial Health, 2015, 9, 261.	0.3	37
43	Widespread anthelmintic resistance in European farmed ruminants: a systematic review. Veterinary Record, 2015, 176, 546-546.	0.2	133
44	Novel insights into the pathogenic importance, diagnosis and treatment of the rumen fluke (Calicophoron daubneyi) in cattle. Veterinary Parasitology, 2015, 207, 134-139.	0.7	61
45	Mathematical Inference on Helminth Egg Counts in Stool and Its Applications in Mass Drug Administration Programmes to Control Soil-Transmitted Helminthiasis in Public Health. Advances in Parasitology, 2015, 87, 193-247.	1.4	36
46	Diagnosis before treatment: Identifying dairy farmers' determinants for the adoption of sustainable practices in gastrointestinal nematode control. Veterinary Parasitology, 2015, 212, 308-317.	0.7	47
47	Measuring larval nematode contamination on cattle pastures: Comparing two herbage sampling methods. Veterinary Parasitology, 2015, 210, 159-166.	0.7	17
48	ECONOHEALTH: Placing helminth infections of livestock in an economic and social context. Veterinary Parasitology, 2015, 212, 62-67.	0.7	35
49	Development of a multiplex fluorescence immunological assay for the simultaneous detection of antibodies against Cooperia oncophora, Dictyocaulus viviparus and Fasciola hepatica in cattle. Parasites and Vectors, 2015, 8, 335.	1.0	18
50	Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study. Geospatial Health, 2014, 8, 671.	0.3	30
51	Non-invasive indicators associated with the milk yield response after anthelmintic treatment at calving in dairy cows. BMC Veterinary Research, 2014, 10, 264.	0.7	19
52	Practices to optimise gastrointestinal nematode control on sheep, goat and cattle farms in Europe using targeted (selective) treatments. Veterinary Record, 2014, 175, 250-255.	0.2	129
53	The parasitic phase of Ostertagia ostertagi: quantification of the main life history traits through systematic review and meta-analysis. International Journal for Parasitology, 2014, 44, 1091-1104.	1.3	26
54	Longitudinal study on the temporal and micro-spatial distribution of Galba truncatula in four farms in Belgium as a base for small-scale risk mapping of Fasciola hepatica. Parasites and Vectors, 2014, 7, 528.	1.0	21

#	Article	IF	CITATIONS
55	Recent advances in the diagnosis, impact on production and prediction of <i>Fasciola hepatica</i> in cattle. Parasitology, 2014, 141, 326-335.	0.7	128
56	A stochastic frontier approach to study the relationship between gastrointestinal nematode infections and technical efficiency of dairy farms. Journal of Dairy Science, 2014, 97, 3498-3508.	1.4	21
57	Comparison of individual and pooled faecal samples in sheep for the assessment of gastrointestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Veterinary Parasitology, 2014, 205, 216-223.	0.7	57
58	Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 2014, 30, 361-367.	1.5	265
59	Conceptual framework for analysing farm-specific economic effects of helminth infections in ruminants and control strategies. Preventive Veterinary Medicine, 2013, 109, 228-235.	0.7	29
60	Serological evidence of Ostertagia ostertagi infection in dairy cows does not impact the efficacy of rabies vaccination during the housing period. Research in Veterinary Science, 2013, 95, 1055-1058.	0.9	6
61	Global Change and Helminth Infections in Grazing Ruminants in Europe: Impacts, Trends and Sustainable Solutions. Agriculture (Switzerland), 2013, 3, 484-502.	1.4	82
62	De monitoring van maagdarmworm- en leverbotinfecties op Belgische melkveebedrijven met tankmelk ELISA's: maken we vooruitgang in parasietencontrole?. Vlaams Diergeneeskundig Tijdschrift, 2013, 82, .	0.1	7
63	The economic effects of whole-herd versus selective anthelmintic treatment strategies in dairy cows. Journal of Dairy Science, 2012, 95, 2977-2987.	1.4	22
64	Risk factors for Psoroptes ovis mange on Belgian Blue farms in Northern Belgium. Veterinary Parasitology, 2012, 190, 216-221.	0.7	10
65	Novel insights in the faecal egg count reduction test for monitoring drug efficacy against gastrointestinal nematodes of veterinary importance. Veterinary Parasitology, 2012, 188, 391-396.	0.7	62
66	Integrating Fasciolosis Control in the Dry Cow Management: The Effect of Closantel Treatment on Milk Production. PLoS ONE, 2012, 7, e43216.	1.1	36
67	ParaCalc®—A novel tool to evaluate the economic importance of worm infections on the dairy farm. Veterinary Parasitology, 2012, 184, 204-211.	0.7	42
68	The bias, accuracy and precision of faecal egg count reduction test results in cattle using McMaster, Cornell-Wisconsin and FLOTAC egg counting methods. Veterinary Parasitology, 2012, 188, 194-199.	0.7	68
69	Serum pepsinogen levels to monitor gastrointestinal nematode infections in cattle revisited. Research in Veterinary Science, 2011, 90, 451-456.	0.9	30
70	Towards assessing fine-scale indicators for the spatial transmission risk of Fasciola hepatica in cattle. Geospatial Health, 2011, 5, 239.	0.3	52
71	Diseases of Dairy Animals Parasites, Internal: Gastrointestinal Nematodes. , 2011, , 258-263.		1
72	A Comparison of the Sensitivity and Fecal Egg Counts of the McMaster Egg Counting and Kato-Katz Thick Smear Methods for Soil-Transmitted Helminths. PLoS Neglected Tropical Diseases, 2011, 5, e1201.	1.3	138

#	Article	IF	CITATIONS
73	Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climate zone. International Journal for Parasitology, 2011, 41, 225-233.	1.3	98
74	Monitoring drug efficacy against gastrointestinal nematodes when faecal egg counts are low: do the analytic sensitivity and the formula matter?. Parasitology Research, 2011, 109, 953-957.	0.6	48
75	Infections with gastrointestinal nematodes, Fasciola and Paramphistomum in cattle in Cambodia and their association with morbidity parameters. Veterinary Parasitology, 2011, 175, 293-299.	0.7	57
76	Novel Insights in the Fecal Egg Count Reduction Test for Monitoring Drug Efficacy against Soil-Transmitted Helminths in Large-Scale Treatment Programs. PLoS Neglected Tropical Diseases, 2011, 5, e1427.	1.3	19
77	Evaluation of anti-Ostertagia ostertagi antibodies in individual milk samples as decision parameter for selective anthelmintic treatment in dairy cows. Preventive Veterinary Medicine, 2010, 93, 147-152.	0.7	32
78	The use of a simplified faecal egg count reduction test for assessing anthelmintic efficacy on Belgian and German cattle farms. Veterinary Parasitology, 2010, 169, 352-357.	0.7	47
79	Monitoring macrocyclic lactone resistance in Cooperia oncophora on a Belgian cattle farm during four consecutive years. Veterinary Parasitology, 2010, 171, 167-171.	0.7	32
80	Ostertagia ostertagi in first-season grazing cattle in Belgium, Germany and Sweden: General levels of infection and related management practices. Veterinary Parasitology, 2010, 171, 91-98.	0.7	41
81	Epidemiology and risk factors for exposure to gastrointestinal nematodes in dairy herds in northwestern Europe. Veterinary Parasitology, 2010, 173, 247-254.	0.7	64
82	Associations between blood gastrin, ghrelin, leptin, pepsinogen and Ostertagia ostertagi antibody concentrations and voluntary feed intake in calves exposed to a trickle infection with O. ostertagi. Veterinary Parasitology, 2009, 162, 295-305.	0.7	17
83	Gastrointestinal nematode infections in adult dairy cattle: Impact on production, diagnosis and control. Veterinary Parasitology, 2009, 164, 70-79.	0.7	150
84	Assessment of the within- and between-laboratory repeatability of a commercially available Ostertagia ostertagi milk ELISA. Veterinary Parasitology, 2009, 164, 66-69.	0.7	14
85	Assessing the feasibility of targeted selective treatments for gastrointestinal nematodes in first-season grazing cattle based on mid-season daily weight gains. Veterinary Parasitology, 2009, 164, 80-88.	0.7	39
86	The use of bulk-tank milk ELISAs to assess the spatial distribution of Fasciola hepatica, Ostertagia ostertagi and Dictyocaulus viviparus in dairy cattle in Flanders (Belgium). Veterinary Parasitology, 2009, 165, 51-57.	0.7	84
87	Measurement of antibodies to gastrointestinal nematodes and liver fluke in meat juice of beef cattle and associations with carcass parameters. Veterinary Parasitology, 2009, 166, 235-240.	0.7	42
88	Ostertagia ostertagi antibodies in milk samples: Relationships with herd management and milk production parameters in two Mediterranean production systems of Spain. Research in Veterinary Science, 2009, 87, 416-420.	0.9	16
89	Qualitative and quantitative evaluation of coprological and serological techniques for the diagnosis of fasciolosis in cattle. Veterinary Parasitology, 2008, 153, 44-51.	0.7	101
90	A survey of the exposure to Ostertagia ostertagi in dairy cow herds in Europe through the measurement of antibodies in milk samples from the bulk tank. Veterinary Parasitology, 2008, 157, 100-107.	0.7	55

#	Article	IF	CITATIONS
91	A longitudinal survey of anti-Ostertagia ostertagi antibody levels in individual and bulk tank milk in two dairy herds in Normandy. Research in Veterinary Science, 2007, 83, 194-197.	0.9	21
92	Predicting milk-production responses after an autumn treatment of pastured dairy herds with eprinomectin. Veterinary Parasitology, 2007, 143, 322-328.	0.7	50
93	Associations between anti-Fasciola hepatica antibody levels in bulk-tank milk samples and production parameters in dairy herds. Preventive Veterinary Medicine, 2007, 78, 57-66.	0.7	102
94	The effect of an experimentally induced acute mastitis on the test results of an Ostertagia ostertagi milk ELISA. Veterinary Parasitology, 2006, 136, 161-165.	0.7	18
95	Associations between dairy herd management factors and bulk tank milk antibody levels against Ostertagia ostertagi. Veterinary Parasitology, 2005, 133, 91-100.	0.7	45
96	A survey to determine relationships between bulk tank milk antibodies against Ostertagia ostertagi and milk production parameters. Veterinary Parasitology, 2005, 129, 67-75.	0.7	65
97	Assessment of the repeatability of a milk Ostertagia ostertagi ELISA and effects of sample preparation. Preventive Veterinary Medicine, 2005, 68, 277-288	0.7	26