
Hsien-Wei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3032092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Niobium Addition on the High-Temperature Oxidation Behavior of 22Cr25NiWCoCu Stainless Steel in Air. Metals, 2019, 9, 975.	1.0	12
2	Tribological properties of nanocomposite Cr-Mo-Si-N coatings at elevated temperature through silicon content modification. Surface and Coatings Technology, 2018, 338, 69-74.	2.2	35
3	Improving high-temperature tribological characteristics on nanocomposite CrAlSiN coating by Mo doping. Surface and Coatings Technology, 2018, 349, 752-756.	2.2	37
4	Influence of Si contents on tribological characteristics of CrAlSiN nanocomposite coatings. Thin Solid Films, 2015, 584, 46-51.	0.8	30
5	Modification of TiO2 powder via atmospheric dielectric barrier discharge treatment for high performance lithium-ion battery anodes. Thin Solid Films, 2015, 596, 250-255.	0.8	8
6	Development of Si-modified CrAlSiN nanocomposite coating for anti-wear application in extreme environment. Surface and Coatings Technology, 2015, 284, 273-280.	2.2	32
7	Texture, Microstructure, and Tribological Behavior in <scp>T</scp> i <scp>A</scp> l <scp>N</scp> / <scp>S</scp> i <scp>N</scp> _x Multilayers. International Journal of Applied Ceramic Technology, 2014, 11, 611-617.	1.1	1
8	Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass. Thin Solid Films, 2014, 561, 98-101.	0.8	46
9	Modification of structure and property in Zr-based thin film metallic glass via processing temperature control. Thin Solid Films, 2014, 561, 38-42.	0.8	34
10	Microstructure control in TiAlN/SiNx multilayers with appropriate thickness ratios for improvement of hardness and anti-corrosion characteristics. Vacuum, 2013, 87, 195-199.	1.6	35
11	Characterization of mechanical properties and adhesion of Ta–Zr–Cu–Al–Ag thin film metallic glasses. Surface and Coatings Technology, 2013, 231, 332-336.	2.2	29
12	The effect of Cr/Zr chemical composition ratios on the mechanical properties of CrN/ZrN multilayered coatings deposited by cathodic arc deposition system. Surface and Coatings Technology, 2013, 231, 247-252.	2.2	25
13	The influence of boron contents on the microstructure and mechanical properties of Cr–B–N thin films. Vacuum, 2013, 87, 191-194.	1.6	11
14	Effects of carbon content on the microstructure and mechanical property of cathodic arc evaporation deposited CrCN thin films. Surface and Coatings Technology, 2013, 231, 482-486.	2.2	42
15	Texture, microstructure and anti-wear characteristics in isostructural CrAlSiN/W2N multilayer coatings. Thin Solid Films, 2013, 544, 265-269.	0.8	11
16	Structure and mechanical property evaluation of Cr–Ti–B–N coatings. Thin Solid Films, 2013, 544, 380-385.	0.8	13
17	Effects of Al and V Additions on Mechanical Response in Thick TiSiCN Nanocomposites Deposited Using Plasma-Enhanced Magnetron Sputtering. Japanese Journal of Applied Physics, 2013, 52, 11NJ10.	0.8	2
18	Mechanical and thermal behaviors of nitrogen-doped Zr-Cu-Al-Ag-Ta––An alternative class of thin film metallic glass. Applied Physics Letters, 2012, 101, .	1.5	16

HSIEN-WEI CHEN

#	Article	IF	CITATIONS
19	Effects of Boron and Nitrogen Contents on the Microstructures and Mechanical Properties of Cr-B-N Nanocomposite Thin Films. Procedia Engineering, 2012, 36, 360-367.	1.2	10
20	Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment. Surface and Coatings Technology, 2011, 206, 1571-1576.	2.2	38
21	Influence of bilayer period and thickness ratio on the mechanical and tribological properties of CrSiN/TiAlN multilayer coatings. Surface and Coatings Technology, 2011, 206, 1886-1892.	2.2	19
22	Microstructure and mechanical property evaluation of pulsed DC magnetron sputtered Cr–B and Cr–B–N films. Surface and Coatings Technology, 2011, 206, 1711-1719.	2.2	29
23	Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings. Surface and Coatings Technology, 2011, 206, 1744-1752.	2.2	46
24	Microstructures and mechanical properties evaluation of TiAlN/CrSiN multilayered thin films with different bilayer periods. Surface and Coatings Technology, 2010, 205, 1438-1443.	2.2	25
25	Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings. Surface and Coatings Technology, 2010, 205, 1189-1194.	2.2	76
26	Microstructure, mechanical and electrochemical properties evaluation of pulsed DC reactive magnetron sputtered nanostructured Cr–Zr–N and Cr–Zr–Si–N thin films. Surface and Coatings Technology, 2010, 205, 1331-1338.	2.2	15