Isabel Bäurle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/303148/publications.pdf

Version: 2024-02-01

38 papers 5,520 citations

147801 31 h-index 315739 38 g-index

67 all docs

67 docs citations

67 times ranked

5727 citing authors

#	Article	IF	CITATIONS
1	Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytologist, 2022, 234, 1144-1160.	7.3	54
2	Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory. Plant Physiology, 2022, 189, 703-714.	4.8	24
3	Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Current Opinion in Plant Biology, 2021, 61, 102007.	7.1	70
4	Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications, 2021, 12, 3426.	12.8	100
5	FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. Plant Journal, 2020, 104, 7-17.	5.7	29
6	Chromatin regulation of somatic abiotic stress memory. Journal of Experimental Botany, 2020, 71, 5269-5279.	4.8	59
7	The <i>Arabidopsis</i> epigenetic regulator ICU11 as an accessory protein of Polycomb Repressive Complex 2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16660-16666.	7.1	26
8	BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory. Plant, Cell and Environment, 2019, 42, 771-781.	5.7	65
9	Chromatinâ€based mechanisms of temperature memory in plants. Plant, Cell and Environment, 2019, 42, 762-770.	5.7	125
10	An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research, 2019, 29, 379-390.	12.0	149
11	Can't remember to forget you: Chromatin-based priming of somatic stress responses. Seminars in Cell and Developmental Biology, 2018, 83, 133-139.	5.0	34
12	Distinct heat shock factors and chromatin modifications mediate the organâ€autonomous transcriptional memory of heat stress. Plant Journal, 2018, 95, 401-413.	5.7	99
13	Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 2017, 18, 124.	8.8	534
14	Plant Heat Adaptation: priming in response to heat stress. F1000Research, 2016, 5, 694.	1.6	97
15	Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 2016, 91, 1118-1133.	10.4	388
16	HSFA2 orchestrates transcriptional dynamics after heat stress in <i>Arabidopsis thaliana</i> Transcription, 2016, 7, 111-114.	3.1	38
17	A hitâ€andâ€run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO Journal, 2016, 35, 162-175.	7.8	299
18	A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis. Plant Physiology, 2016, 171, 344-358.	4.8	18

#	Article	IF	Citations
19	Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. ELife, 2016, 5, .	6.0	152
20	Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses. ELife, 2016, 5, .	6.0	86
21	Get the jump – Do 3′UTRs protect transposable elements from silencing?. Mobile Genetic Elements, 2015, 5, 51-54.	1.8	2
22	Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signaling and Behavior, 2014, 9, e970430.	2.4	42
23	<i>Arabidopsis miR156</i> Regulates Tolerance to Recurring Environmental Stress through <i>SPL</i> Transcription Factors. Plant Cell, 2014, 26, 1792-1807.	6.6	511
24	eQTL Mapping of Transposon Silencing Reveals a Position-Dependent Stable Escape from Epigenetic Silencing and Transposition of <i>AtMu1</i> in the <i>Arabidopsis</i> Lineage. Plant Cell, 2014, 26, 3261-3271.	6.6	12
25	Genetics, Evolution, and Adaptive Significance of the Selfing Syndrome in the Genus <i>Capsella</i> ÂÂ. Plant Cell, 2011, 23, 3156-3171.	6.6	66
26	RNA 3′ processing functions of <i>Arabidopsis</i> FCA and FPA limit intergenic transcription. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8508-8513.	7.1	75
27	Altered interactions within FY/AtCPSF complexes required for <i>Arabidopsis</i> FCA-mediated chromatin silencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8772-8777.	7.1	36
28	FRIGIDA Delays Flowering in Arabidopsis via a Cotranscriptional Mechanism Involving Direct Interaction with the Nuclear Cap-Binding Complex Â. Plant Physiology, 2009, 150, 1611-1618.	4.8	130
29	Differential Interactions of the Autonomous Pathway RRM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets. PLoS ONE, 2008, 3, e2733.	2.5	64
30	Widespread Role for the Flowering-Time Regulators FCA and FPA in RNA-Mediated Chromatin Silencing. Science, 2007, 318, 109-112.	12.6	161
31	The Arabidopsis RNA-Binding Protein FCA Requires a Lysine-Specific Demethylase 1 Homolog to Downregulate FLC. Molecular Cell, 2007, 28, 398-407.	9.7	290
32	The Timing of Developmental Transitions in Plants. Cell, 2006, 125, 655-664.	28.9	554
33	Regulation of WUSCHEL Transcription in the Stem Cell Niche of the Arabidopsis Shoot Meristem. Plant Cell, 2005, 17, 2271-2280.	6.6	90
34	Apical meristems: the plant's fountain of youth. BioEssays, 2003, 25, 961-970.	2.5	113
35	The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes and Development, 2002, 16, 1610-1615.	5.9	485
36	Interaction of the Response Regulator ARR4 with Phytochrome B in Modulating Red Light Signaling. Science, 2001, 294, 1108-1111.	12.6	299

Isabel BÃ**¤**rle

#	Article	IF	CITATION
37	Arabidopsisphytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Letters, 2000, 470, 107-112.	2.8	78
38	Differential Expression and Nuclear Localization of Response Regulatorâ€Like Proteins from <i>Arabidopsis thaliana</i> ¹ . Plant Biology, 1999, 1, 495-505.	3.8	57