## Robert F Hobbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3031429/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | An Improved <sup>211</sup> At-Labeled Agent for PSMA-Targeted α-Therapy. Journal of Nuclear Medicine,<br>2022, 63, 259-267.                                                                                                                                                        | 5.0 | 28        |
| 2  | Combination of Carriers with Complementary Intratumoral Microdistributions of Delivered<br><b>α</b> -Particles May Realize the Promise for <sup>225</sup> Ac in Large, Solid Tumors. Journal of<br>Nuclear Medicine, 2022, 63, 1223-1230.                                          | 5.0 | 5         |
| 3  | <sup>212</sup> Pb-conjugated anti-rat HER2/ <i>neu</i> antibody against a <i>neu</i> N derived murine<br>mammary carcinoma cell line: cell kill and RBE inÂvitro. International Journal of Radiation Biology,<br>2022, 98, 1452-1461.                                              | 1.8 | 4         |
| 4  | I-124 PET/CT image-based dosimetry in patients with differentiated thyroid cancer treated with I-131:<br>correlation of patient-specific lesional dosimetry to treatment response. Annals of Nuclear Medicine,<br>2022, 36, 213-223.                                               | 2.2 | 4         |
| 5  | Reply LTE, Single time point tumour dosimetry assuming normal distribution of tumour kinetics.<br>Journal of Nuclear Medicine, 2022, , jnumed.121.263717.                                                                                                                          | 5.0 | 0         |
| 6  | Anti-GD2 antibody for radiopharmaceutical imaging of osteosarcoma. European Journal of Nuclear<br>Medicine and Molecular Imaging, 2022, 49, 4382-4393.                                                                                                                             | 6.4 | 4         |
| 7  | Preclinical evaluation of <sup>213</sup> Bi-/ <sup>225</sup> Ac-labeled low-molecular-weight<br>compounds for radiopharmaceutical therapy of prostate cancer. Journal of Nuclear Medicine, 2021,<br>62, jnumed.120.256388.                                                         | 5.0 | 17        |
| 8  | Current Status of Radiopharmaceutical Therapy. International Journal of Radiation Oncology Biology<br>Physics, 2021, 109, 891-901.                                                                                                                                                 | 0.8 | 44        |
| 9  | Overcoming Barriers to Radiopharmaceutical Therapy (RPT): An Overview From the NRG-NCI Working<br>Group on Dosimetry of Radiopharmaceutical Therapy. International Journal of Radiation Oncology<br>Biology Physics, 2021, 109, 905-912.                                           | 0.8 | 13        |
| 10 | Superior Postimplant Dosimetry Achieved Using Dynamic Intraoperative Dosimetry for Permanent<br>Prostate Brachytherapy. Practical Radiation Oncology, 2021, 11, 264-271.                                                                                                           | 2.1 | 1         |
| 11 | Process validation, current good manufacturing practice production, dosimetry, and toxicity studies of the carbonic anhydrase IX imaging agent [ 111 In]Inâ€XYIMSRâ€01 for phase I regulatory approval. Journal of Labelled Compounds and Radiopharmaceuticals, 2021, 64, 243-250. | 1.0 | 2         |
| 12 | Prospective SPECT-CT Organ Dosimetry-Driven Radiation-Absorbed Dose Escalation Using the In-111<br>(111In)/Yttrium 90 (90Y) Ibritumomab Tiuxetan (Zevalin®) Theranostic Pair in Patients with Lymphoma at<br>Myeloablative Dose Levels. Cancers, 2021, 13, 2828.                   | 3.7 | 8         |
| 13 | Transport-driven engineering of liposomes for delivery of α-particle radiotherapy to solid tumors:<br>effect on inhibition of tumor progression and onset delay of spontaneous metastases. European<br>Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4246-4258.     | 6.4 | 11        |
| 14 | Abstract 1395: Humanized GD2 antibody for targeted radiopharmaceutical therapy of human and canine osteosarcoma. , 2021, , .                                                                                                                                                       |     | 0         |
| 15 | Renal 99mTc-DMSA pharmacokinetics in pediatric patients. EJNMMI Physics, 2021, 8, 53.                                                                                                                                                                                              | 2.7 | 3         |
| 16 | Dosimetric impact of Ac-227 in accelerator-produced Ac-225 for alpha-emitter radiopharmaceutical<br>therapy of patients with hematological malignancies: a pharmacokinetic modeling analysis. EJNMMI<br>Physics, 2021, 8, 60.                                                      | 2.7 | 11        |
| 17 | Real-time quantitation of thyroidal radioiodine uptake in thyroid disease with monitoring by a collar detection device. Scientific Reports, 2021, 11, 18479.                                                                                                                       | 3.3 | 2         |
| 18 | DeepAMO: a multi-slice, multi-view anthropomorphic model observer for visual detection tasks performed on volume images. Journal of Medical Imaging, 2021, 8, 041204.                                                                                                              | 1.5 | 3         |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Practical considerations for quantitative clinical SPECT/CT imaging of alpha particle emitting radioisotopes. Theranostics, 2021, 11, 9721-9737.                                                                                              | 10.0 | 12        |
| 20 | Imaging and dosimetry for alpha-particle emitter radiopharmaceutical therapy: improving<br>radiopharmaceutical therapy by looking into the black box. European Journal of Nuclear Medicine and<br>Molecular Imaging, 2021, 49, 18-29.         | 6.4  | 15        |
| 21 | Tumor Response to Radiopharmaceutical Therapies: The Knowns and the Unknowns. Journal of<br>Nuclear Medicine, 2021, 62, 12S-22S.                                                                                                              | 5.0  | 14        |
| 22 | Normal-Tissue Tolerance to Radiopharmaceutical Therapies, the Knowns and the Unknowns. Journal of Nuclear Medicine, 2021, 62, 23S-35S.                                                                                                        | 5.0  | 32        |
| 23 | Human Radiation Dosimetry for Orally and Intravenously Administered <sup>18</sup> F-FDG. Journal of<br>Nuclear Medicine, 2020, 61, 613-619.                                                                                                   | 5.0  | 11        |
| 24 | Preclinical Evaluation of <sup>203/212</sup> Pb-Labeled Low-Molecular-Weight Compounds for<br>Targeted Radiopharmaceutical Therapy of Prostate Cancer. Journal of Nuclear Medicine, 2020, 61,<br>80-88.                                       | 5.0  | 59        |
| 25 | Mathematical Modeling of Preclinical Alpha-Emitter Radiopharmaceutical Therapy. Cancer Research, 2020, 80, 868-876.                                                                                                                           | 0.9  | 10        |
| 26 | Response of breast cancer carcinoma spheroids to combination therapy with radiation and DNA-PK<br>inhibitor: growth arrest without a change in <i>α</i> / <i>β</i> ratio. International Journal of Radiation<br>Biology, 2020, 96, 1534-1540. | 1.8  | 5         |
| 27 | Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nature Reviews Drug<br>Discovery, 2020, 19, 589-608.                                                                                                                 | 46.4 | 370       |
| 28 | A phase II randomized trial of RAdium-223 dichloride and SABR Versus SABR for oligomEtastatic prostate caNcerS (RAVENS). BMC Cancer, 2020, 20, 492.                                                                                           | 2.6  | 16        |
| 29 | Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer. Theranostics, 2020, 10, 2888-2896.                                                                              | 10.0 | 28        |
| 30 | Dosimetry, Radiobiology and Synthetic Lethality: Radiopharmaceutical Therapy (RPT) With Alpha-Particle-Emitters. Seminars in Nuclear Medicine, 2020, 50, 124-132.                                                                             | 4.6  | 29        |
| 31 | SAT-417 Personalized Treatment Planning for Radioiodine Therapy of Graves' Disease;The Collar<br>Therapy Indicator(CoTI). Journal of the Endocrine Society, 2020, 4, .                                                                        | 0.2  | 0         |
| 32 | Dosimetric considerations of 99mTc-MDP uptake within the epiphyseal plates of the long bones of pediatric patients. Physics in Medicine and Biology, 2020, 65, 235025.                                                                        | 3.0  | 3         |
| 33 | Accuracy in dosimetry of diagnostic agents: impact of the number of source tissues used in whole organ S value-based calculations. EJNMMI Research, 2020, 10, 26.                                                                             | 2.5  | 2         |
| 34 | Body morphometry appropriate computational phantoms for dose and risk optimization in pediatric renal imaging with Tc-99m DMSA and Tc-99m MAG3. Physics in Medicine and Biology, 2020, 65, 235026.                                            | 3.0  | 5         |
| 35 | 177Lu-labeled low-molecular-weight agents for PSMA-targeted radiopharmaceutical therapy. European<br>Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2545-2557.                                                                  | 6.4  | 40        |
| 36 | Radium-223 mechanism of action: implications for use in treatment combinations. Nature Reviews Urology, 2019, 16, 745-756.                                                                                                                    | 3.8  | 71        |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Current pediatric administered activity guidelines for <sup>99m</sup> Tcâ€DMSA SPECT based on patient<br>weight do not provide the same taskâ€based image quality. Medical Physics, 2019, 46, 4847-4856.                                                     | 3.0  | 7         |
| 38 | Development and Validation of Methods for Quantitative In Vivo SPECT of Pb-212. Journal of Medical<br>Imaging and Radiation Sciences, 2019, 50, S33.                                                                                                         | 0.3  | 3         |
| 39 | α-Particle–Emitter Radiopharmaceutical Therapy: Resistance Is Futile. Cancer Research, 2019, 79,<br>5479-5481.                                                                                                                                               | 0.9  | 13        |
| 40 | The Case for Dosimetry in Alpha-Emitter Therapy. Journal of Medical Imaging and Radiation Sciences, 2019, 50, S45-S46.                                                                                                                                       | 0.3  | 3         |
| 41 | 68Ga-DOTATATE PET. Nuclear Medicine Communications, 2019, 40, 920-926.                                                                                                                                                                                       | 1.1  | 8         |
| 42 | Radiopharmaceutical Therapy. Health Physics, 2019, 116, 175-178.                                                                                                                                                                                             | 0.5  | 19        |
| 43 | Evaluation of <sup>111</sup> In-DOTA-5D3, a Surrogate SPECT Imaging Agent for Radioimmunotherapy of<br>Prostate-Specific Membrane Antigen. Journal of Nuclear Medicine, 2019, 60, 400-406.                                                                   | 5.0  | 19        |
| 44 | Combined model-based and patient-specific dosimetry for 18F-DCFPyL, a PSMA-targeted PET agent.<br>European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 989-998.                                                                             | 6.4  | 12        |
| 45 | Comparative Dosimetry for <sup>68</sup> Ga-DOTATATE: Impact of Using Updated ICRP Phantoms, S<br>Values, and Tissue-Weighting Factors. Journal of Nuclear Medicine, 2018, 59, 1281-1288.                                                                     | 5.0  | 12        |
| 46 | Targeted and Nontargeted α-Particle Therapies. Annual Review of Biomedical Engineering, 2018, 20, 73-93.                                                                                                                                                     | 12.3 | 46        |
| 47 | Biodistribution and Radiation Dosimetry of <sup>124</sup> I-DPA-713, a PET Radiotracer for Macrophage-Associated Inflammation. Journal of Nuclear Medicine, 2018, 59, 1751-1756.                                                                             | 5.0  | 22        |
| 48 | Phase II study of intraoperative dosimetry for prostate brachytherapy using registered ultrasound and fluoroscopy. Brachytherapy, 2018, 17, 858-865.                                                                                                         | 0.5  | 3         |
| 49 | Dosimetry and Radiobiology of Alpha-Particle Emitting Radionuclides. Current Radiopharmaceuticals, 2018, 11, 209-214.                                                                                                                                        | 0.8  | 20        |
| 50 | Recombinant Human Thyroid-Stimulating Hormone Versus Thyroid Hormone Withdrawal in<br><sup>124</sup> I PET/CT–Based Dosimetry for <sup>131</sup> I Therapy of Metastatic Differentiated<br>Thyroid Cancer. Journal of Nuclear Medicine, 2017, 58, 1146-1154. | 5.0  | 42        |
| 51 | Imaging of Programmed Cell Death Ligand 1: Impact of Protein Concentration on Distribution of<br>Anti-PD-L1 SPECT Agents in an Immunocompetent Murine Model of Melanoma. Journal of Nuclear<br>Medicine, 2017, 58, 1560-1566.                                | 5.0  | 73        |
| 52 | Dose Estimation in Pediatric Nuclear Medicine. Seminars in Nuclear Medicine, 2017, 47, 118-125.                                                                                                                                                              | 4.6  | 27        |
| 53 | Quantitative impact of changes in marrow cellularity, skeletal size, and bone mineral density on active marrow dosimetry based upon a reference model. Medical Physics, 2017, 44, 272-283.                                                                   | 3.0  | 8         |
| 54 | Depthâ€dependent concentrations of hematopoietic stem cells in the adult skeleton: Implications for active marrow dosimetry. Medical Physics, 2017, 44, 747-761.                                                                                             | 3.0  | 4         |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1<br>antibodies in an immune competent transgenic breast cancer model. EJNMMI Research, 2017, 7, 57.                                           | 2.5 | 35        |
| 56 | Human HER2 overexpressing mouse breast cancer cell lines derived from MMTV.f.HuHER2 mice: characterization and use in a model of metastatic breast cancer. Oncotarget, 2017, 8, 68071-68082.                                              | 1.8 | 6         |
| 57 | Comparison of quantitative Yâ€90 SPECT and nonâ€timeâ€ofâ€flight PET imaging in postâ€therapy<br>radioembolization of liver cancer. Medical Physics, 2016, 43, 5779-5790.                                                                 | 3.0 | 32        |
| 58 | Absorbed-dose calculation for treatment of liver neoplasms with 90Y-microspheres. Clinical and Translational Imaging, 2016, 4, 273-282.                                                                                                   | 2.1 | 6         |
| 59 | A risk index for pediatric patients undergoing diagnostic imaging<br>with <sup>99m</sup> Tc-dimercaptosuccinic acid that accounts for body habitus. Physics in Medicine<br>and Biology, 2016, 61, 2319-2332.                              | 3.0 | 17        |
| 60 | [ <sup>18</sup> F]Fluoroethyl Triazole Substituted PSMA Inhibitor Exhibiting Rapid Normal Organ<br>Clearance. Bioconjugate Chemistry, 2016, 27, 1655-1662.                                                                                | 3.6 | 15        |
| 61 | (2 <i>S</i> )-2-(3-(1-Carboxy-5-(4- <sup>211</sup> At-Astatobenzamido)Pentyl)Ureido)-Pentanedioic Acid for<br>PSMA-Targeted α-Particle Radiopharmaceutical Therapy. Journal of Nuclear Medicine, 2016, 57, 1569-1575.                     | 5.0 | 101       |
| 62 | Pharmacokinetic modeling of [18F]fluorodeoxyglucose (FDG) for premature infants, and newborns<br>through 5-year-olds. EJNMMI Research, 2016, 6, 28.                                                                                       | 2.5 | 7         |
| 63 | Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an<br>Immunocompetent Mouse Model of Breast Cancer. Cancer Research, 2016, 76, 472-479.                                                                 | 0.9 | 140       |
| 64 | Effective treatment of ductal carcinoma in situ with a HER-2-targeted alpha-particle emitting radionuclide in a preclinical model of human breast cancer. Oncotarget, 2016, 7, 33306-33315.                                               | 1.8 | 25        |
| 65 | Development of a defect model for renal pediatric SPECT imaging research. , 2015, , .                                                                                                                                                     |     | 5         |
| 66 | Use of standardized uptake value thresholding for target volume delineation in pediatric Hodgkin<br>lymphoma. Practical Radiation Oncology, 2015, 5, 219-227.                                                                             | 2.1 | 7         |
| 67 | Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy. EJNMMI Physics, 2015, 2, 5.                                                                              | 2.7 | 10        |
| 68 | Initial Evaluation of [18F]DCFPyL for Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer. Molecular Imaging and Biology, 2015, 17, 565-574.                                                                | 2.6 | 378       |
| 69 | Preclinical Evaluation of 86Y-Labeled Inhibitors of Prostate-Specific Membrane Antigen for Dosimetry<br>Estimates. Journal of Nuclear Medicine, 2015, 56, 628-634.                                                                        | 5.0 | 35        |
| 70 | Strengths and Weaknesses of a Planar Whole-Body Method of 153Sm Dosimetry for Patients with<br>Metastatic Osteosarcoma and Comparison with Three-Dimensional Dosimetry. Cancer Biotherapy and<br>Radiopharmaceuticals, 2015, 30, 369-379. | 1.0 | 9         |
| 71 | The Role of Preclinical Models in Radiopharmaceutical Therapy. American Society of Clinical<br>Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , e121-e125.                                         | 3.8 | 6         |
| 72 | Development and evaluation of convergent and accelerated penalized SPECT image reconstruction<br>methods for improved dose–volume histogram estimation in radiopharmaceutical therapy. Medical<br>Physics, 2014, 41, 112507.              | 3.0 | 2         |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy. Radiation Research, 2014, 181, 90-98.                                                                                        | 1.5 | 40        |
| 74 | Radiopharmaceutical therapy in the era of precision medicine. European Journal of Cancer, 2014, 50, 2360-2363.                                                                                                                                                   | 2.8 | 16        |
| 75 | MIRD Pamphlet No. 24: Guidelines for Quantitative <sup>131</sup> I SPECT in Dosimetry Applications.<br>Journal of Nuclear Medicine, 2013, 54, 2182-2188.                                                                                                         | 5.0 | 125       |
| 76 | Radiobiologic Optimization of Combination Radiopharmaceutical Therapy Applied to Myeloablative<br>Treatment of Non-Hodgkin Lymphoma. Journal of Nuclear Medicine, 2013, 54, 1535-1542.                                                                           | 5.0 | 20        |
| 77 | Evaluation of image quality using Channelized Hotelling observer for pediatric diagnostic imaging of 99mTc-dimercaptosuccinic acid. , 2013, , .                                                                                                                  |     | Ο         |
| 78 | Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy. Radiation Research, 2013, , 131230084310008.                                                                                 | 1.5 | 0         |
| 79 | Biodistribution, Tumor Detection, and Radiation Dosimetry of <sup>18</sup> F-DCFBC, a<br>Low-Molecular-Weight Inhibitor of Prostate-Specific Membrane Antigen, in Patients with Metastatic<br>Prostate Cancer. Journal of Nuclear Medicine, 2012, 53, 1883-1891. | 5.0 | 264       |
| 80 | Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy<br>Ion Beam Radiobiology?. Antibodies, 2012, 1, 124-148.                                                                                                        | 2.5 | 16        |
| 81 | MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy. Journal of Nuclear Medicine, 2012, 53, 1310-1325.                                                                                        | 5.0 | 293       |
| 82 | A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry. Physics in Medicine and Biology, 2012, 57, 4403-4424.                                                                                                                              | 3.0 | 48        |
| 83 | Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom<br>study. Physics in Medicine and Biology, 2012, 57, 1433-1457.                                                                                                     | 3.0 | 20        |
| 84 | A bone marrow toxicity model for <sup>223</sup> Ra alpha-emitter radiopharmaceutical therapy.<br>Physics in Medicine and Biology, 2012, 57, 3207-3222.                                                                                                           | 3.0 | 105       |
| 85 | Three-dimensional radiobiological dosimetry (3D-RD) with 124I PET for 131I therapy of thyroid cancer.<br>European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 41-47.                                                                            | 6.4 | 52        |
| 86 | A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External<br>Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2011, 80, 1256-1262.                                                          | 0.8 | 49        |
| 87 | 2-(3-{1-Carboxy-5-[(6-[18F]Fluoro-Pyridine-3-Carbonyl)-Amino]-Pentyl}-Ureido)-Pentanedioic Acid,<br>[18F]DCFPyL, a PSMA-Based PET Imaging Agent for Prostate Cancer. Clinical Cancer Research, 2011, 17,<br>7645-7653.                                           | 7.0 | 331       |
| 88 | An Approach for Balancing Diagnostic Image Quality with Cancer Risk: Application to Pediatric<br>Diagnostic Imaging of <sup>99m</sup> Tc-Dimercaptosuccinic Acid. Journal of Nuclear Medicine, 2011,<br>52, 1923-1929.                                           | 5.0 | 33        |
| 89 | Sequential Cytarabine and α-Particle Immunotherapy with Bismuth-213–Lintuzumab (HuM195) for Acute<br>Myeloid Leukemia. Clinical Cancer Research, 2010, 16, 5303-5311.                                                                                            | 7.0 | 234       |
| 90 | <sup>124</sup> I PET-Based 3D-RD Dosimetry for a Pediatric Thyroid Cancer Patient: Real-Time Treatment<br>Planning and Methodologic Comparison. Journal of Nuclear Medicine, 2009, 50, 1844-1847.                                                                | 5.0 | 80        |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | MIRD Commentary: Proposed Name for a Dosimetry Unit Applicable to Deterministic Biological<br>Effects—The Barendsen (Bd). Journal of Nuclear Medicine, 2009, 50, 485-487.                                         | 5.0  | 31        |
| 92  | Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake. Medical Physics, 2009, 36, 612-619. | 3.0  | 46        |
| 93  | MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry—Standardization of<br>Nomenclature. Journal of Nuclear Medicine, 2009, 50, 477-484.                                                  | 5.0  | 633       |
| 94  | Calculation of the biological effective dose for piecewise defined doseâ€rate fits. Medical Physics, 2009, 36, 904-907.                                                                                           | 3.0  | 30        |
| 95  | Comparison of Residence Time Estimation Methods for Radioimmunotherapy Dosimetry and Treatment<br>Planning—Monte Carlo Simulation Studies. IEEE Transactions on Medical Imaging, 2008, 27, 521-530.               | 8.9  | 48        |
| 96  | Alpha-particles for targeted therapy. Advanced Drug Delivery Reviews, 2008, 60, 1402-1406.                                                                                                                        | 13.7 | 107       |
| 97  | Three-Dimensional Imaging-Based Radiobiological Dosimetry. Seminars in Nuclear Medicine, 2008, 38, 321-334.                                                                                                       | 4.6  | 82        |
| 98  | Cancer Stem Cell Targeting Using the Alpha-Particle Emitter, <sup>213</sup> Bi: Mathematical Modeling and Feasibility Analysis. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 74-81.                      | 1.0  | 22        |
| 99  | <i>Update:</i> Molecular Radiotherapy: Survey and Current Status. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 531-540.                                                                                  | 1.0  | 7         |
| 100 | Toward Patient-Friendly Cell-Level Dosimetry. Journal of Nuclear Medicine, 2007, 48, 496-497.                                                                                                                     | 5.0  | 11        |
| 101 | MIRD Continuing Education: Bystander and Low Dose-Rate Effects: Are These Relevant to Radionuclide<br>Therapy?. Journal of Nuclear Medicine, 2007, 48, 1683-1691.                                                 | 5.0  | 53        |
| 102 | Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80-mCi rule. Journal of Nuclear Medicine, 2006, 47, 1977-84.                      | 5.0  | 34        |
| 103 | Dosimetry of internal emitters. Journal of Nuclear Medicine, 2005, 46 Suppl 1, 18S-27S.                                                                                                                           | 5.0  | 40        |
| 104 | Introduction to Kidney Dose–Response for Radionuclide Therapy. Cancer Biotherapy and<br>Radiopharmaceuticals, 2004, 19, 357-358.                                                                                  | 1.0  | 3         |
| 105 | Targeted α particle immunotherapy for myeloid leukemia. Blood, 2002, 100, 1233-1239.                                                                                                                              | 1.4  | 430       |
| 106 | Targeted alpha particle immunotherapy for myeloid leukemia. Blood, 2002, 100, 1233-9.                                                                                                                             | 1.4  | 143       |
| 107 | Long-lived Alpha Emitters in Radioimmunotherapy: The Mischievous Progeny. Cancer Biotherapy and Radiopharmaceuticals, 2000, 15, 219-221.                                                                          | 1.0  | 8         |