List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3031199/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.                                                                                                                                | 6.0 | 895       |
| 2  | The Late Miocene Radiation of Modern Felidae: A Genetic Assessment. Science, 2006, 311, 73-77.                                                                                                                                                  | 6.0 | 596       |
| 3  | Initial sequence and comparative analysis of the cat genome. Genome Research, 2007, 17, 1675-1689.                                                                                                                                              | 2.4 | 311       |
| 4  | The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics, 2008, 9, 119.                                                                                                                                                       | 1.2 | 303       |
| 5  | Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nature Communications, 2014, 5, 3521.                                                                                                                    | 5.8 | 275       |
| 6  | Sea Anemone (Cnidaria, Anthozoa, Actiniaria) Toxins: An Overview. Marine Drugs, 2012, 10, 1812-1851.                                                                                                                                            | 2.2 | 183       |
| 7  | Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biology, 2015, 16, 277.                                                                                                                                                         | 3.8 | 167       |
| 8  | Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Science Advances, 2017, 3, e1700299.                                                                                                                    | 4.7 | 142       |
| 9  | The chemical ecology of cyanobacteria. Natural Product Reports, 2012, 29, 372.                                                                                                                                                                  | 5.2 | 125       |
| 10 | Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins.<br>Toxins, 2013, 5, 2172-2208.                                                                                                               | 1.5 | 111       |
| 11 | Pangolin genomes and the evolution of mammalian scales and immunity. Genome Research, 2016, 26, 1312-1322.                                                                                                                                      | 2.4 | 95        |
| 12 | White shark genome reveals ancient elasmobranch adaptations associated with wound healing and<br>the maintenance of genome stability. Proceedings of the National Academy of Sciences of the United<br>States of America, 2019, 116, 4446-4455. | 3.3 | 92        |
| 13 | The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics.<br>PLoS Genetics, 2008, 4, e1000251.                                                                                                         | 1.5 | 91        |
| 14 | Evolution of CRISPs Associated with Toxicoferan-Reptilian Venom and Mammalian Reproduction.<br>Molecular Biology and Evolution, 2012, 29, 1807-1822.                                                                                            | 3.5 | 89        |
| 15 | Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains.<br>Molecular and Cellular Proteomics, 2013, 12, 651-663.                                                                                                | 2.5 | 83        |
| 16 | Vomeronasal Receptors in Vertebrates and the Evolution of Pheromone Detection. Annual Review of<br>Animal Biosciences, 2017, 5, 353-370.                                                                                                        | 3.6 | 81        |
| 17 | Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species. Gene, 2006, 366, 292-302.                                                                                                    | 1.0 | 79        |
| 18 | Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds. Toxins, 2013, 5, 2456-2487.                                                                                                                               | 1.5 | 79        |

| #  | Article                                                                                                                                                                                                                      | IF                | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 19 | Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics, 2019, 35, 1862-1869.                                                                                                               | 1.8               | 75           |
| 20 | Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida. Molecular<br>Biology and Evolution, 2015, 32, 2832-2843.                                                                               | 3.5               | 73           |
| 21 | Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases. BMC Evolutionary Biology, 2010, 10, 281.                                         | 3.2               | 71           |
| 22 | Phylogeny and Biogeography of Cyanobacteria and Their Produced Toxins. Marine Drugs, 2013, 11, 4350-4369.                                                                                                                    | 2.2               | 70           |
| 23 | The evolutionary history of extinct and living lions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10927-10934.                                                               | 3.3               | 70           |
| 24 | Alignment-Free Prediction of Polygalacturonases with Pseudofolding Topological Indices:<br>Experimental Isolation from Coffea arabica and Prediction of a New Sequence. Journal of Proteome<br>Research, 2009, 8, 2122-2128. | 1.8               | 65           |
| 25 | Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research, 2012, 73, 7-16.                                                                      | 1.1               | 64           |
| 26 | Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments. BMC Genomics, 2014, 15, 779.                                                 | 1.2               | 64           |
| 27 | The Complete Phylogeny of Pangolins: Scaling Up Resources for the Molecular Tracing of the Most<br>Trafficked Mammals on Earth. Journal of Heredity, 2018, 109, 347-359.                                                     | 1.0               | 64           |
| 28 | Molecular Phylogeny and Evolution of the Proteins Encoded by Coleoid (Cuttlefish, Octopus, and) Tj ETQq0 0 0 r                                                                                                               | gBT /Overl<br>0.8 | ock 10 Tf 50 |
| 29 | ASSESSING THE TAXONOMIC STATUS OF THE PALAWAN PANGOLIN MANIS CULIONENSIS (PHOLIDOTA) USING DISCRETE MORPHOLOGICAL CHARACTERS. Journal of Mammalogy, 2005, 86, 1068-1074.                                                     | 0.6               | 61           |
| 30 | Dracula's children: Molecular evolution of vampire bat venom. Journal of Proteomics, 2013, 89, 95-111.                                                                                                                       | 1.2               | 61           |
| 31 | Subspecies Genetic Assignments of Worldwide Captive Tigers Increase Conservation Value of Captive Populations. Current Biology, 2008, 18, 592-596.                                                                           | 1.8               | 59           |
| 32 | Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.<br>BMC Genomics, 2015, 16, 751.                                                                                         | 1.2               | 58           |
| 33 | Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes.<br>Genomics, 2005, 86, 708-717.                                                                                            | 1.3               | 57           |
| 34 | Sympatric Asian felid phylogeography reveals a major Indochinese–Sundaic divergence. Molecular<br>Ecology, 2014, 23, 2072-2092.                                                                                              | 2.0               | 56           |
| 35 | Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth<br>Factor Gene into the Advanced Snake Venom Arsenalf. PLoS ONE, 2013, 8, e81827.                                            | 1.1               | 56           |
| 36 | The Role of Nuclear Genes in Intraspecific Evolutionary Inference: Genealogy of the transferrin Gene in the Brown Trout. Molecular Biology and Evolution, 2002, 19, 1272-1287.                                               | 3.5               | 55           |

| #  | Article                                                                                                                                                                                                                                                    | IF              | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 37 | The phosphoprotein phosphatase family of Ser/Thr phosphatases as principal targets of naturally occurring toxins. Critical Reviews in Toxicology, 2011, 41, 83-110.                                                                                        | 1.9             | 53                 |
| 38 | Squeezers and Leaf-cutters: Differential Diversification and Degeneration of the Venom System in Toxicoferan Reptiles. Molecular and Cellular Proteomics, 2013, 12, 1881-1899.                                                                             | 2.5             | 52                 |
| 39 | FIV cross-species transmission: An evolutionary prospective. Veterinary Immunology and<br>Immunopathology, 2008, 123, 159-166.                                                                                                                             | 0.5             | 51                 |
| 40 | Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS ONE, 2018, 13, e0194368.                                                                                                   | 1.1             | 50                 |
| 41 | First report on the occurrence of microcystins in planktonic cyanobacteria from Central Mexico.<br>Toxicon, 2010, 56, 425-431.                                                                                                                             | 0.8             | 49                 |
| 42 | Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous<br>Australian funnel-web spiders. BMC Genomics, 2014, 15, 177.                                                                                           | 1.2             | 49                 |
| 43 | Bushmeat genetics: setting up a reference framework for the <scp>DNA</scp> typing of <scp>A</scp> frican forest bushmeat. Molecular Ecology Resources, 2015, 15, 633-651.                                                                                  | 2.2             | 49                 |
| 44 | Computational study of the covalent bonding of microcystins to cysteine residues – a reaction involved in the inhibition of the PPP family of protein phosphatases. FEBS Journal, 2013, 280, 674-680.                                                      | 2.2             | 46                 |
| 45 | Whole Genome Sequencing of the Symbiont <i>Pseudovibrio</i> sp. from the Intertidal Marine<br>Sponge <i>Polymastia penicillus</i> Revealed a Gene Repertoire for Host-Switching Permissive Lifestyle.<br>Genome Biology and Evolution, 2015, 7, 3022-3032. | 1.1             | 46                 |
| 46 | Emerging Viruses in the Felidae: Shifting Paradigms. Viruses, 2012, 4, 236-257.                                                                                                                                                                            | 1.5             | 44                 |
| 47 | Phylogeny and biogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Archives of Microbiology, 2015, 197, 47-52.                                                                                                                      | 1.0             | 41                 |
| 48 | Evidence of Unique and Generalist Microbes in Distantly Related Sympatric Intertidal Marine Sponges<br>(Porifera: Demospongiae). PLoS ONE, 2013, 8, e80653.                                                                                                | 1.1             | 39                 |
| 49 | Phylogeography of the heavily poached <scp>A</scp> frican common pangolin (Pholidota, <i>Manis) Tj ETQq1 1<br/>Molecular Ecology, 2016, 25, 5975-5993.</i>                                                                                                 | 0.784314<br>2.0 | rgBT /Overlo<br>39 |
| 50 | Comparative Study of Topological Indices of Macro/Supramolecular RNA Complex Networks. Journal of Chemical Information and Modeling, 2008, 48, 2265-2277.                                                                                                  | 2.5             | 38                 |
| 51 | Combining Genetic and Demographic Data for the Conservation of a Mediterranean Marine<br>Habitat-Forming Species. PLoS ONE, 2015, 10, e0119585.                                                                                                            | 1.1             | 38                 |
| 52 | A draft genome sequence of the elusive giant squid, Architeuthis dux. GigaScience, 2020, 9, .                                                                                                                                                              | 3.3             | 37                 |
| 53 | Application of real-time PCR in the assessment of the toxic cyanobacterium Cylindrospermopsis raciborskii abundance and toxicological potential. Applied Microbiology and Biotechnology, 2011, 92, 189-197.                                                | 1.7             | 36                 |
| 54 | Susceptibility of Pets to SARS-CoV-2 Infection: Lessons from a Seroepidemiologic Survey of Cats and Dogs in Portugal. Microorganisms, 2022, 10, 345.                                                                                                       | 1.6             | 36                 |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Molecular and phylogenetic characterization of potentially toxic cyanobacteria in Tunisian freshwaters. Systematic and Applied Microbiology, 2011, 34, 303-310.                                     | 1.2 | 35        |
| 56 | Unusual Symbiotic Cyanobacteria Association in the Genetically Diverse Intertidal Marine Sponge<br>Hymeniacidon perlevis (Demospongiae, Halichondrida). PLoS ONE, 2012, 7, e51834.                  | 1.1 | 34        |
| 57 | Pyrosequencing Characterization of the Microbiota from Atlantic Intertidal Marine Sponges Reveals<br>High Microbial Diversity and the Lack of Co-Occurrence Patterns. PLoS ONE, 2015, 10, e0127455. | 1.1 | 34        |
| 58 | Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens. Current Biology, 2020, 30, 5018-5025.e5.                                                    | 1.8 | 34        |
| 59 | Low Genetic Diversity and High Invasion Success of Corbicula fluminea (Bivalvia, Corbiculidae)<br>(Müller, 1774) in Portugal. PLoS ONE, 2016, 11, e0158108.                                         | 1.1 | 32        |
| 60 | Complex evolutionary history in the brown trout: Insights on the recognition of conservation units.<br>Conservation Genetics, 2001, 2, 337-347.                                                     | 0.8 | 30        |
| 61 | Life on the Edge: The Long-Term Persistence and Contrasting Spatial Genetic Structure of Distinct<br>Brown Trout Life Histories at Their Ecological Limits. Journal of Heredity, 2006, 97, 193-205. | 1.0 | 30        |
| 62 | Mitochondrial Introgressions into the Nuclear Genome of the Domestic Cat. Journal of Heredity, 2007, 98, 414-420.                                                                                   | 1.0 | 30        |
| 63 | Annotated features of domestic cat – Felis catus genome. GigaScience, 2014, 3, 13.                                                                                                                  | 3.3 | 30        |
| 64 | Structural divergence and adaptive evolution in mammalian cytochromes P450 2C. Gene, 2007, 387, 58-66.                                                                                              | 1.0 | 28        |
| 65 | Genetic Diversity and Structure of the Invasive Toxic Cyanobacterium Cylindrospermopsis raciborskii.<br>Current Microbiology, 2011, 62, 1590-1595.                                                  | 1.0 | 28        |
| 66 | Seasonal Dynamics of Microcystis spp. and Their Toxigenicity as Assessed by qPCR in a Temperate<br>Reservoir. Marine Drugs, 2011, 9, 1715-1730.                                                     | 2.2 | 27        |
| 67 | Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates. PLoS ONE, 2014, 9, e74132.                                                              | 1.1 | 27        |
| 68 | Positive selection as a key player for SARS-CoV-2 pathogenicity: Insights into ORF1ab, S and E genes.<br>Virus Research, 2021, 302, 198472.                                                         | 1.1 | 27        |
| 69 | Comparative evolutionary genomics of the HADH2 gene encoding Aβ-binding alcohol<br>dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10). BMC Genomics, 2006, 7, 202.                 | 1.2 | 26        |
| 70 | Small Molecules in the Cone Snail Arsenal. Organic Letters, 2015, 17, 4933-4935.                                                                                                                    | 2.4 | 25        |
| 71 | The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection<br>Revealing a Host–Pathogen Arms Race in Birds. Diversity, 2019, 11, 131.                         | 0.7 | 25        |
| 72 | Unraveling a 146 Years Old Taxonomic Puzzle: Validation of Malabar Snakehead, Species-Status and Its<br>Relevance for Channid Systematics and Evolution. PLoS ONE, 2011, 6, e21272.                 | 1.1 | 25        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Genetic variability of the invasive cyanobacteria Cylindrospermopsis raciborskii from Bir M'cherga<br>reservoir (Tunisia). Archives of Microbiology, 2011, 193, 595-604.                                                    | 1.0 | 24        |
| 74 | Evolutionary History, Genomic Adaptation to Toxic Diet, and Extinction of the Carolina Parakeet.<br>Current Biology, 2020, 30, 108-114.e5.                                                                                  | 1.8 | 24        |
| 75 | Proteomic Analyses of the Unexplored Sea Anemone Bunodactis verrucosa. Marine Drugs, 2018, 16, 42.                                                                                                                          | 2.2 | 23        |
| 76 | IMPACT_S: Integrated Multiprogram Platform to Analyze and Combine Tests of Selection. PLoS ONE, 2014, 9, e96243.                                                                                                            | 1.1 | 23        |
| 77 | Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments. BMC Genomics, 2018, 19, 121.                                                                                          | 1.2 | 22        |
| 78 | The Role of Gene Duplication and Unconstrained Selective Pressures in the Melanopsin Gene Family Evolution and Vertebrate Circadian Rhythm Regulation. PLoS ONE, 2012, 7, e52413.                                           | 1.1 | 22        |
| 79 | Contribution of DNA-typing to bushmeat surveys: assessment of a roadside market in south-western<br>Nigeria. Wildlife Research, 2011, 38, 696.                                                                              | 0.7 | 21        |
| 80 | Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles.<br>Molecular Biology and Evolution, 2017, 34, 2522-2536.                                                                 | 3.5 | 21        |
| 81 | The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC<br>0450. Applied and Environmental Microbiology, 2018, 84, .                                                             | 1.4 | 21        |
| 82 | Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2)<br>Subfamilies in Birds. Genome Biology and Evolution, 2016, 8, 1115-1131.                                                     | 1.1 | 20        |
| 83 | Structural and Molecular Diversification of the Anguimorpha Lizard Mandibular Venom Gland System in the Arboreal Species Abronia graminea. Journal of Molecular Evolution, 2012, 75, 168-183.                               | 0.8 | 19        |
| 84 | Adaptive evolution of the matrix extracellular phosphoglycoprotein in mammals. BMC Evolutionary Biology, 2011, 11, 342.                                                                                                     | 3.2 | 18        |
| 85 | Demographic responses to warming: reproductive maturity and sex influence vulnerability in an octocoral. Coral Reefs, 2015, 34, 1207-1216.                                                                                  | 0.9 | 18        |
| 86 | Jellyfish Bioactive Compounds: Methods for Wet-Lab Work. Marine Drugs, 2016, 14, 75.                                                                                                                                        | 2.2 | 18        |
| 87 | Adaptive evolution of the Retinoid X receptor in vertebrates. Genomics, 2012, 99, 81-89.                                                                                                                                    | 1.3 | 17        |
| 88 | Atractaspis aterrima Toxins: The First Insight into the Molecular Evolution of Venom in Side-Stabbers.<br>Toxins, 2013, 5, 1948-1964.                                                                                       | 1.5 | 17        |
| 89 | An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species. BioMed Research International, 2015, 2015, 1-12.                                                       | 0.9 | 17        |
| 90 | Postglacial range expansion shaped the spatial genetic structureÂin a marine habitatâ€forming species:<br>Implications for conservation plans in the Eastern Adriatic Sea. Journal of Biogeography, 2018, 45,<br>2645-2657. | 1.4 | 17        |

| #   | Article                                                                                                                                                                                                                           | IF         | CITATIONS     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 91  | Are pangolins scapegoats of the COVIDâ€19 outbreakâ€CoV transmission and pathology evidence?.<br>Conservation Letters, 2020, 13, e12754.                                                                                          | 2.8        | 17            |
| 92  | De novo sequencing, assembly and analysis of eight different transcriptomes from the Malayan pangolin. Scientific Reports, 2016, 6, 28199.                                                                                        | 1.6        | 16            |
| 93  | Parabolic variation in sexual selection intensity across the range of a coldâ€water pipefish:<br>implications for susceptibility to climate change. Global Change Biology, 2017, 23, 3600-3609.                                   | 4.2        | 16            |
| 94  | Analysis of Pelagia noctiluca proteome Reveals a Red Fluorescent Protein, a Zinc Metalloproteinase<br>and a Peroxiredoxin. Protein Journal, 2017, 36, 77-97.                                                                      | 0.7        | 16            |
| 95  | Cyanotoxins Occurrence in Portugal: A New Report on Their Recent Multiplication. Toxins, 2020, 12, 154.                                                                                                                           | 1.5        | 16            |
| 96  | Isolation and characterization of microsatellite markers in pangolins (Mammalia,) Tj ETQq0 0 0 rgBT /Overlock 10                                                                                                                  | 0 Tf 50 54 | 2 Td (Pholidc |
| 97  | Phylogeny of Microcystins: Evidence of a Biogeographical Trend?. Current Microbiology, 2013, 66, 214-221.                                                                                                                         | 1.0        | 15            |
| 98  | Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions. PLoS ONE, 2015, 10, e0135405.                                                                        | 1.1        | 15            |
| 99  | Structural and functional implications of positive selection at the primate angiogenin gene. BMC Evolutionary Biology, 2007, 7, 167.                                                                                              | 3.2        | 14            |
| 100 | TI2BioP: Topological Indices to BioPolymers. Its practical use to unravel cryptic bacteriocin-like domains. Amino Acids, 2011, 40, 431-442.                                                                                       | 1.2        | 14            |
| 101 | LMAP: Lightweight Multigene Analyses in PAML. BMC Bioinformatics, 2016, 17, 354.                                                                                                                                                  | 1.2        | 14            |
| 102 | Whole-Genome Comparisons Among the Genus Shewanella Reveal the Enrichment of Genes Encoding<br>Ankyrin-Repeats Containing Proteins in Sponge-Associated Bacteria. Frontiers in Microbiology, 2019,<br>10, 5.                      | 1.5        | 14            |
| 103 | What's behind these scales? Comments to "The complete mitochondrial genome of Temminck's ground pangolin (Smutsia temminckii; Smuts, 1832) and phylogenetic position of the Pholidota (Weber, 1904)―<br>Gene, 2015, 563, 106-108. | 1.0        | 13            |
| 104 | First occurrence of cylindrospermopsin in Portugal: a contribution to its continuous global dispersal. Toxicon, 2017, 130, 87-90.                                                                                                 | 0.8        | 13            |
| 105 | The lek mating system of the worm pipefish ( <i>Nerophis lumbriciformis</i> ): a molecular maternity<br>analysis and test of the phenotypeâ€linked fertility hypothesis. Molecular Ecology, 2017, 26, 1371-1385.                  | 2.0        | 13            |
| 106 | Transcriptomic Characterization of the South American Freshwater Stingray Potamotrygon motoro<br>Venom Apparatus. Toxins, 2018, 10, 544.                                                                                          | 1.5        | 13            |
| 107 | Comparative Genomics Reveals Metabolic Specificity of Endozoicomonas Isolated from a Marine Sponge and the Genomic Repertoire for Host-Bacteria Symbioses. Microorganisms, 2019, 7, 635.                                          | 1.6        | 13            |
| 108 | Graph Theory-Based Sequence Descriptors as Remote Homology Predictors. Biomolecules, 2020, 10, 26.                                                                                                                                | 1.8        | 13            |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The Quantitative Proteome of the Cement and Adhesive Gland of the Pedunculate Barnacle, Pollicipes pollicipes. International Journal of Molecular Sciences, 2020, 21, 2524.                                                 | 1.8 | 13        |
| 110 | Adaptive Functional Divergence of the Warm Temperature Acclimation-Related Protein (WAP65) in<br>Fishes and the Ortholog Hemopexin (HPX) in Mammals. Journal of Heredity, 2014, 105, 237-252.                               | 1.0 | 12        |
| 111 | African Origin and Europe-Mediated Global Dispersal of The Cyanobacterium Microcystis aeruginosa.<br>Current Microbiology, 2014, 69, 628-633.                                                                               | 1.0 | 12        |
| 112 | Bone-associated gene evolution and the origin of flight in birds. BMC Genomics, 2016, 17, 371.                                                                                                                              | 1.2 | 12        |
| 113 | Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola. GigaScience, 2018, 7, .                              | 3.3 | 12        |
| 114 | Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype. Genome Biology and Evolution, 2019, 11, 2244-2255.                                                    | 1.1 | 12        |
| 115 | Characterization of the First Conotoxin from Conus ateralbus, a Vermivorous Cone Snail from the<br>Cabo Verde Archipelago. Marine Drugs, 2019, 17, 432.                                                                     | 2.2 | 12        |
| 116 | Emerging Computational Approaches for Antimicrobial Peptide Discovery. Antibiotics, 2022, 11, 936.                                                                                                                          | 1.5 | 12        |
| 117 | Fish Lateral Line Innovation: Insights into the Evolutionary Genomic Dynamics of a Unique<br>Mechanosensory Organ. Molecular Biology and Evolution, 2012, 29, 3887-3898.                                                    | 3.5 | 11        |
| 118 | Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems.<br>World Journal of Microbiology and Biotechnology, 2016, 32, 118.                                                          | 1.7 | 11        |
| 119 | ShadowCaster: Compositional Methods under the Shadow of Phylogenetic Models to Detect<br>Horizontal Gene Transfers in Prokaryotes. Genes, 2020, 11, 756.                                                                    | 1.0 | 11        |
| 120 | Assessing the impact of population decline on mating system in the overexploited Mediterranean red coral. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1149-1159.                                      | 0.9 | 11        |
| 121 | Morphological and Genetic Evidence for Multiple Evolutionary Distinct Lineages in the Endangered<br>and Commercially Exploited Red Lined Torpedo Barbs Endemic to the Western Ghats of India. PLoS ONE,<br>2013, 8, e69741. | 1.1 | 11        |
| 122 | An Alignment-Free Approach for Eukaryotic ITS2 Annotation and Phylogenetic Inference. PLoS ONE, 2011, 6, e26638.                                                                                                            | 1.1 | 10        |
| 123 | Deadly Innovations: Unraveling the Molecular Evolution of Animal Venoms. , 2016, , 1-27.                                                                                                                                    |     | 10        |
| 124 | Exploring general-purpose protein features for distinguishing enzymes and non-enzymes within the twilight zone. BMC Bioinformatics, 2017, 18, 349.                                                                          | 1.2 | 10        |
| 125 | Beyond the beaten path: improving natural products bioprospecting using an eco-evolutionary framework $\hat{a} \in \hat{a}$ the case of the octocorals. Critical Reviews in Biotechnology, 2018, 38, 184-198.               | 5.1 | 10        |
| 126 | The Harderian gland transcriptomes of Caraiba andreae, Cubophis cantherigerus and Tretanorhinus variabilis, three colubroid snakes from Cuba. Genomics, 2019, 111, 1720-1727.                                               | 1.3 | 10        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Shotgun Proteomics of Ascidians Tunic Gives New Insights on Host–Microbe Interactions by Revealing<br>Diverse Antimicrobial Peptides. Marine Drugs, 2020, 18, 362.                                                      | 2.2 | 10        |
| 128 | Symbiotic Associations in Ascidians: Relevance for Functional Innovation and Bioactive Potential.<br>Marine Drugs, 2021, 19, 370.                                                                                       | 2.2 | 10        |
| 129 | Cyanobacterial Blooms: Current Knowledge and New Perspectives. Earth, 2022, 3, 127-135.                                                                                                                                 | 0.9 | 10        |
| 130 | Conopeptides from Cape Verde Conus crotchii. Marine Drugs, 2013, 11, 2203-2215.                                                                                                                                         | 2.2 | 9         |
| 131 | Exploring the Adenylation Domain Repertoire of Nonribosomal Peptide Synthetases Using an Ensemble of Sequence-Search Methods. PLoS ONE, 2013, 8, e65926.                                                                | 1.1 | 9         |
| 132 | Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns. Genome Biology and Evolution, 2016, 8, 2748-2759.                                                                                      | 1.1 | 9         |
| 133 | Characterization of transferrin-linked microsatellites in brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Molecular Ecology Notes, 2006, 6, 547-549.                                                      | 1.7 | 8         |
| 134 | From molecule to conservation: DNA-based methods to overcome frontiers in the shark and ray fin trade. Conservation Genetics Resources, 2021, 13, 231-247.                                                              | 0.4 | 8         |
| 135 | Proteogenomic Characterization of the Cement and Adhesive Gland of the Pelagic Gooseneck Barnacle<br>Lepas anatifera. International Journal of Molecular Sciences, 2021, 22, 3370.                                      | 1.8 | 8         |
| 136 | Decoding sex: Elucidating sex determination and how high-quality genome assemblies are untangling the evolutionary dynamics of sex chromosomes. Genomics, 2022, 114, 110277.                                            | 1.3 | 8         |
| 137 | Morphological, toxicological and molecular characterization of a benthic Nodularia isolated from Atlantic estuarine environments. Research in Microbiology, 2010, 161, 9-17.                                            | 1.0 | 7         |
| 138 | Non-linear models based on simple topological indices to identify RNase III protein members. Journal of<br>Theoretical Biology, 2011, 273, 167-178.                                                                     | 0.8 | 7         |
| 139 | Demo-Genetic Approach for the Conservation and Restoration of a Habitat-Forming Octocoral: The<br>Case of Red Coral, Corallium rubrum, in the Réserve Naturelle de Scandola. Frontiers in Marine<br>Science, 2021, 8, . | 1.2 | 7         |
| 140 | Genetic Evidence for Contrasting Wetland and Savannah Habitat Specializations in Different<br>Populations of Lions ( <i>Panthera leo</i> ). Journal of Heredity, 2016, 107, 101-103.                                    | 1.0 | 6         |
| 141 | The Genome Sequence of the Octocoral <i>Paramuricea clavata</i> – A Key Resource To Study the<br>Impact of Climate Change in the Mediterranean. G3: Genes, Genomes, Genetics, 2020, 10, 2941-2952.                      | 0.8 | 6         |
| 142 | Putative Antimicrobial Peptides of the Posterior Salivary Glands from the Cephalopod Octopus vulgaris Revealed by Exploring a Composite Protein Database. Antibiotics, 2020, 9, 757.                                    | 1.5 | 6         |
| 143 | The new COST Action European Venom Network (EUVEN)—synergy and future perspectives of modern venomics. GigaScience, 2021, 10,                                                                                           | 3.3 | 6         |
| 144 | Biomedical Potential of the Neglected Molluscivorous and Vermivorous Conus Species. Marine Drugs, 2022, 20, 105.                                                                                                        | 2.2 | 6         |

| #   | Article                                                                                                                                                                                                         | IF               | CITATIONS          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 145 | A Novel Network Science and Similarity-Searching-Based Approach for Discovering Potential Tumor-Homing Peptides from Antimicrobials. Antibiotics, 2022, 11, 401.                                                | 1.5              | 6                  |
| 146 | A collective statement in support of saving pangolins. Science of the Total Environment, 2022, 824, 153666.                                                                                                     | 3.9              | 6                  |
| 147 | EASER: Ensembl Easy Sequence Retriever. Evolutionary Bioinformatics, 2013, 9, EBO.S11335.                                                                                                                       | 0.6              | 5                  |
| 148 | Microcystin‣RÂDetectedÂinÂaÂLowÂMolecularÂWeight FractionÂfromÂaÂCrudeÂExtractÂofÂZoanthusÂsocia<br>Toxins, 2017, 9, 89.                                                                                        | itus.<br>1.5     | 5                  |
| 149 | Medusozoans reported in Portugal and its ecological and economical relevance. Regional Studies in Marine Science, 2020, 35, 101230.                                                                             | 0.4              | 5                  |
| 150 | Gradients of genetic diversity and differentiation across the distribution range of a Mediterranean coral: Patterns, processes and conservation implications. Diversity and Distributions, 2021, 27, 2104-2123. | 1.9              | 5                  |
| 151 | Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.<br>Methods in Molecular Biology, 2016, 1401, 253-272.                                                               | 0.4              | 5                  |
| 152 | Gathering Computational Genomics and Proteomics to Unravel Adaptive Evolution. Evolutionary Bioinformatics, 2007, 3, 117693430700300.                                                                           | 0.6              | 4                  |
| 153 | Insights into the Toxicological Properties of a Low Molecular Weight Fraction from Zoanthus sociatus (Cnidaria). Marine Drugs, 2013, 11, 2873-2881.                                                             | 2.2              | 4                  |
| 154 | Comparative eye and liver differentially expressed genes reveal monochromatic vision and cancer resistance in the shortfin mako shark (Isurus oxyrinchus). Genomics, 2020, 112, 4817-4826.                      | 1.3              | 4                  |
| 155 | Acquisition of social behavior in mammalian lineages is related with duplication events of FPR genes.<br>Genomics, 2020, 112, 2778-2783.                                                                        | 1.3              | 4                  |
| 156 | Neofunctionalization of the UCP1 mediated the non-shivering thermogenesis in the evolution of small-sized placental mammals. Genomics, 2020, 112, 2489-2498.                                                    | 1.3              | 4                  |
| 157 | Gathering computational genomics and proteomics to unravel adaptive evolution. Evolutionary Bioinformatics, 2007, 3, 207-9.                                                                                     | 0.6              | 4                  |
| 158 | Computational optimization of AG18051 inhibitor for amyloidâ€Î² binding alcohol dehydrogenase enzyme.<br>International Journal of Quantum Chemistry, 2008, 108, 1982-1991.                                      | 1.0              | 3                  |
| 159 | Molecular Forensics into the Sea: How Molecular Markers Can Help to Struggle Against Poaching and<br>Illegal Trade in Precious Corals?. , 2016, , 729-745.                                                      |                  | 3                  |
| 160 | Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers. BMC Bioinformatics, 2018, 19, 166.                                                | 1.2              | 3                  |
| 161 | The genetic diversity of two invasive sympatric bivalves (Corbicula fluminea and Dreissena) Tj ETQq1 1 0.784314 r<br>225-229.                                                                                   | gBT /Ovei<br>0.8 | rlock 10 Tf 5<br>3 |
| 162 | The genomic context of retrocopies increases their chance of functional relevancy in mammals.<br>Genomics, 2020, 112, 2410-2417.                                                                                | 1.3              | 3                  |

| #   | Article                                                                                                                                                                                                                                                               | IF          | CITATIONS               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|
| 163 | Engineering protein fragments via evolutionary and protein–protein interaction algorithms: <i>de<br/>novo</i> design of peptide inhibitors for F <sub>O</sub> F <sub>1</sub> â€ATP synthase. FEBS Letters, 2021,<br>595, 183-194.                                     | 1.3         | 3                       |
| 164 | Genomic Signatures of Divergent Ecological Strategies in a Recent Radiation of Neotropical Wild Cats. Molecular Biology and Evolution, 2022, 39, .                                                                                                                    | 3.5         | 3                       |
| 165 | IMPACT: Integrated Multiprogram Platform for Analyses in ConTest. Journal of Heredity, 2011, 102, 366-369.                                                                                                                                                            | 1.0         | 2                       |
| 166 | Response to Comment by Faurby, Werdelin and Svenning. Genome Biology, 2016, 17, 90.                                                                                                                                                                                   | 3.8         | 2                       |
| 167 | Plant Cyanotoxins: Molecular Methods and Current Applications. Toxinology, 2017, , 339-360.                                                                                                                                                                           | 0.2         | 2                       |
| 168 | Preliminary evidence on the presence of cyanobacteria and cyanotoxins from culture enrichments followed by PCR analysis: new perspectives from Africa (Mali) and South Pacific (Fiji) countries. Environmental Science and Pollution Research, 2021, 28, 31731-31745. | 2.7         | 2                       |
| 169 | Review on Cyanobacterial Studies in Portugal: Current Impacts and Research Needs. Applied Sciences<br>(Switzerland), 2021, 11, 4355.                                                                                                                                  | 1.3         | 2                       |
| 170 | Genomics perspectives on cyanobacteria research. , 2020, , 147-159.                                                                                                                                                                                                   |             | 2                       |
| 171 | Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains.<br>Molecular and Cellular Proteomics, 2013, 12, 1488.                                                                                                                         | 2.5         | 1                       |
| 172 | MDPI Oceans: A New Publication Channel for Open Access Science Focused on the Ocean. Oceans, 2019, 1, 1-5.                                                                                                                                                            | 0.6         | 1                       |
| 173 | LMAP_S: Lightweight Multigene Alignment and Phylogeny eStimation. BMC Bioinformatics, 2019, 20, 739.                                                                                                                                                                  | 1.2         | 1                       |
| 174 | Evolutionary genomics of mammalian lung cancer genes reveals signatures of positive selection in APC, RB1 and TP53. Genomics, 2020, 112, 4722-4731.                                                                                                                   | 1.3         | 1                       |
| 175 | Data Employed in the Construction of a Composite Protein Database for Proteogenomic Analyses of<br>Cephalopods Salivary Apparatus. Data, 2020, 5, 110.                                                                                                                | 1.2         | 1                       |
| 176 | Strong Sexual Selection Does Not Induce Population Differentiation in a Fish Species with High<br>Dispersal Potential: The Curious Case of the Worm Pipefish <i>Nerophis lumbriciformis</i> (Teleostei:) Tj ETQq0(                                                    | 0 0 rgBT /( | Ove <b>t</b> lock 10 Tf |
| 177 | Polymerase chain reaction as a promising tool for DNA-based diet studies of crustaceans. Regional<br>Studies in Marine Science, 2020, 37, 101340.                                                                                                                     | 0.4         | 1                       |
| 178 | DISTATIS: A Promising Framework to Integrate Distance Matrices in Molecular Phylogenetics. Current<br>Topics in Medicinal Chemistry, 2021, 21, 599-611.                                                                                                               | 1.0         | 1                       |
| 179 | Omics Advances in the Study of Zooplankton. , 2020, , 264-277.                                                                                                                                                                                                        |             | 1                       |
| 180 | TI2BioP — Topological Indices to BioPolymers. A Graphical– Numerical Approach for Bioinformatics. ,<br>2016, , .                                                                                                                                                      |             | 0                       |

| #   | Article                                                                                                                                                                          | IF                 | CITATIONS   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|
| 181 | Big Data Supervised Pairwise Ortholog Detection in Yeasts. , 2017, , .                                                                                                           |                    | О           |
| 182 | Genetic records of intertidal sea anemones from Portugal. Regional Studies in Marine Science, 2020, 34, 101067.                                                                  | 0.4                | 0           |
| 183 | Draft Genome Sequences of Six <i>Vibrio</i> Strains Isolated from the Atlantic Intertidal Marine Sponge Ophlitaspongia papilla. Microbiology Resource Announcements, 2021, 10, . | 0.3                | Ο           |
| 184 | Pairwise Ortholog Detection in Related Yeast Species by Using Big Data Supervised Classifications. , 0, ,                                                                        |                    | 0           |
| 185 | Tl2BioP: Topological Indices to BioPolymers. , 0, , .                                                                                                                            |                    | 0           |
| 186 | Plant Cyanotoxins: Molecular Methods and Current Applications. , 2016, , 1-23.                                                                                                   |                    | 0           |
| 187 | How the Protein Architecture of RNases III Influences their Substrate Specificity?. Current Pharmaceutical Design, 2016, 22, 5065-5071.                                          | 0.9                | 0           |
| 188 | <strong>Surveying Alignment-free Features for Ortholog Detection in Related Yeast Proteomes by<br/>using Supervised Big Data Classifiers</strong> . , 0, , .                     |                    | 0           |
| 189 | Combining RNA-seq and ddRAD-seq to SNP discovery of a highly migratory and apex predator. Frontiers in Marine Science, 0, 6, .                                                   | 1.2                | Ο           |
| 190 | Polymerase chain reaction as a promising tool for DNA-based diet studies of crustaceans. Frontiers in<br>Marine Science, 0, 6, .                                                 | 1.2                | 0           |
| 191 | De novo transcriptome assembly, annotation and SNP discovery of the shortfin mako (Isurus) Tj ETQq1 1 0.784                                                                      | 1314 rgBT ,<br>1.2 | Overlock 10 |
| 192 | Evolutionary History, Genomic Adaptation to Toxic Diet and Extinction of the Carolina Parakeet. SSRN<br>Electronic Journal, 0, , .                                               | 0.4                | 0           |
| 193 | Medusozoa in Portugal: impact on the ecosystems and development of DNA-based tools for the early forecasting of mass occurrences. Frontiers in Marine Science, 0, 6, .           | 1.2                | Ο           |
| 194 | Shotgun proteomics of ascidians tunic shed light into the interaction between host and their associated bacteria. Frontiers in Marine Science, 0, 6, .                           | 1.2                | 0           |
| 195 | The genes from the pseudoautosomal region 1 (PAR1) of the mammalian sex chromosomes: Synteny, phylogeny and selection. Genomics, 2022, , 110419.                                 | 1.3                | 0           |