List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3031002/publications.pdf Version: 2024-02-01

HADSHIDA DADMAD

#	Article	IF	CITATIONS
1	Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nature Materials, 2021, 20, 1113-1120.	27.5	119
2	Nonlinear Deformation of a Ferrofluid Droplet in a Uniform Magnetic Field. Langmuir, 2011, 27, 14834-14841.	3.5	111
3	Solâ^'Gel Based Chemical Synthesis of Nd ₂ Fe ₁₄ B Hard Magnetic Nanoparticles. Chemistry of Materials, 2010, 22, 6509-6517.	6.7	104
4	Significant progress of grain boundary diffusion process for cost-effective rare earth permanent magnets: A review. Materials and Design, 2021, 209, 110004.	7.0	98
5	A Combinatorial Approach for Assessing the Magnetic Properties of High Entropy Alloys: Role of Cr in AlCo _{<i>x</i>} Cr _{1â€"<i>x</i>} FeNi. Advanced Engineering Materials, 2017, 19, 1700048.	3.5	95
6	Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chemical Communications, 2016, 52, 697-700.	4.1	79
7	Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements. Journal of Materials Science, 2012, 47, 2333-2338.	3.7	78
8	Laser Additive Manufacturing of Magnetic Materials. Jom, 2017, 69, 532-543.	1.9	78
9	Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields. Scientific Reports, 2016, 6, 37671.	3.3	73
10	Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling. Scientific Reports, 2016, 6, 35156.	3.3	73
11	Template assisted assembly of cobalt nanobowl arrays. Journal of Materials Chemistry, 2005, 15, 4424.	6.7	62
12	Influence of La and Ce additions on the magnetocaloric effect of Fe–B–Cr-based amorphous alloys. Applied Physics Letters, 2011, 98, .	3.3	57
13	Magnetic Field Triggered Multicycle Damage Sensing and Self Healing. Scientific Reports, 2015, 5, 13773.	3.3	54
14	Swift heavy ion induced surface modification for tailoring coercivity in Fe–Ni based amorphous thin films. Journal of Applied Physics, 2009, 105, .	2.5	47
15	High energy product chemically synthesized exchange coupled Nd ₂ Fe ₁₄ B/α-Fe magnetic powders. Nanoscale, 2017, 9, 13956-13966.	5.6	47
16	The flow of magnetic nanoparticles in magnetic drug targeting. RSC Advances, 2011, 1, 238.	3.6	44
17	Laser additive processing of functionally-graded Fe–Si–B–Cu–Nb soft magnetic materials. Materials and Manufacturing Processes, 2017, 32, 1581-1587.	4.7	42
18	Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer. Acta Biomaterialia, 2020, 110, 221-230.	8.3	42

#	Article	IF	CITATIONS
19	Anisotropic Magnetoelectric Coupling and Cotton–Mouton Effects in the Organic Magnetic Charge-Transfer Complex Pyrene–F ₄ TCNQ. ACS Applied Materials & Interfaces, 2018, 10, 44654-44659.	8.0	39
20	Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab on A Chip, 2017, 17, 3514-3525.	6.0	38
21	Novel Coiling Behavior in Magnetâ€Polymer Composites. Macromolecular Chemistry and Physics, 2010, 211, 618-626.	2.2	37
22	Mechanochemical synthesis of high coercivity Nd2(Fe,Co)14B magnetic particles. Nanoscale, 2017, 9, 18651-18660.	5.6	35
23	Influence of Cr Substitution and Temperature on Hierarchical Phase Decomposition in the AlCoFeNi High Entropy Alloy. Scientific Reports, 2018, 8, 15578.	3.3	34
24	Curie temperature controlled self-healing magnet–polymer composites. Journal of Materials Research, 2015, 30, 946-958.	2.6	31
25	Spreading of a ferrofluid core in three-stream micromixer channels. Physics of Fluids, 2015, 27, .	4.0	27
26	Templated Assembly of Magnetic Cobalt Nanowire Arrays. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 717-724.	2.2	26
27	Large magnetocaloric effect and refrigerant capacity in Gd–Co–Ni metallic glasses. Journal of Applied Physics, 2012, 111, .	2.5	26
28	Tuning the austenite and martensite phase fraction in ferromagnetic shape memory alloy ribbons of Ni45Co5Mn38Sn12. Applied Physics Letters, 2011, 99, .	3.3	24
29	Anisotropy induced large exchange bias behavior in ball milled Ni–Co–Mn–Sb alloys. Applied Physics Letters, 2011, 98, .	3.3	24
30	Direct magnetocaloric measurements of Fe-B-Cr-X (X = La, Ce) amorphous ribbons. Journal of Applied Physics, 2011, 110, 023907.	2.5	24
31	Magnetic Nanoparticles as Contrast Agents for Magnetic Resonance Imaging. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2012, 82, 257-268.	1.2	24
32	Control of Ferrofluid Droplets in Microchannels by Uniform Magnetic Fields. IEEE Magnetics Letters, 2016, 7, 1-5.	1.1	24
33	The magnetocaloric effect of partially crystalline Fe-B-Cr-Gd alloys. Journal of Applied Physics, 2012, 111, .	2.5	23
34	Comparison of the Crystallization Behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-Based Amorphous Soft Magnetic Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2998-3009.	2.2	23
35	Table-like magnetocaloric effect and enhanced refrigerant capacity of HPS La(Fe,Si)13-based composites by Ce–Co grain boundary diffusion. Journal of Materials Science, 2020, 55, 5908-5919.	3.7	23
36	High Relative Cooling Power in a Multiphase Magnetocaloric FeNiB Alloy. IEEE Magnetics Letters, 2015, 6, 1-4.	1.1	22

#	Article	IF	CITATIONS
37	Exchange interaction in rapidly solidified nanocrystalline RE–(Fe/Co)–B hard magnetic alloys. Journal of Applied Physics, 2009, 105, 07A736.	2.5	21
38	Iron Oxide-based Magnetic Nanoparticles for High Temperature Span Magnetocaloric Applications. Materials Research Society Symposia Proceedings, 2014, 1708, 51.	0.1	20
39	Mechanochemical Synthesis of Iron and Cobalt Magnetic Metal Nanoparticles and Iron/Calcium Oxide and Cobalt/Calcium Oxide Nanocomposites. ChemistryOpen, 2018, 7, 590-598.	1.9	20
40	Magnetic Droplet Merging by Hybrid Magnetic Fields. IEEE Magnetics Letters, 2016, 7, 1-5.	1.1	19
41	Magnet–PNIPA hydrogels for bioengineering applications. Journal of Materials Science, 2009, 44, 1381-1387.	3.7	18
42	Microwave-Based Chemical Synthesis of Co-Alloyed Nd-Fe-B Hard Magnetic Powders. IEEE Magnetics Letters, 2017, 8, 1-5.	1.1	16
43	Novel processing of Cu-bonded La-Ce-Fe-Co-Si magnetocaloric composites for magnetic refrigeration by low-temperature hot pressing. MRS Communications, 2018, 8, 1216-1223.	1.8	16
44	Magnetic and magnetocaloric properties of ball milled Nd5Ge3. Journal of Applied Physics, 2012, 111, .	2.5	15
45	Passivation of Nickel Nanoneedles in Aqueous Solutions. Journal of Physical Chemistry C, 2014, 118, 9073-9077.	3.1	15
46	Hysteretic Buckling for Actuation of Magnet–Polymer Composites. Macromolecular Chemistry and Physics, 2015, 216, 1594-1602.	2.2	15
47	Magnetocaloric effect in amorphous and partially crystallized Fe40Ni38Mo4B18 alloys. AIP Advances, 2016, 6, .	1.3	15
48	Structural characterization of microwave-synthesized zinc-substituted cobalt ferrite nanoparticles. Applied Physics A: Materials Science and Processing, 2011, 104, 229-234.	2.3	14
49	Tuning magnetofluidic spreading in microchannels. Journal of Micromechanics and Microengineering, 2015, 25, 124001.	2.6	14
50	Hot exciton cooling and multiple exciton generation in PbSe quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 31107-31114.	2.8	14
51	Surface evolution of amorphous nanocolumns of Fe–Ni grown by oblique angle deposition. Applied Physics Letters, 2009, 94, 063110.	3.3	13
52	Cobalt–ferrite nanobowl arrays: Curved magnetic nanostructures. Journal of Materials Research, 2007, 22, 1250-1254.	2.6	12
53	Improved Corrosion Resistance of Co,Al-Alloyed NdFeB Magnetic Nanostructures Processed by Microwave Synthesis Techniques. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	12
54	The effect of Copper alloying additions on the crystallization of an amorphous Fe–Si–B alloy. Journal of Materials Science, 2006, 41, 5292-5301.	3.7	10

4

HARSHIDA PARMAR

#	Article	IF	CITATIONS
55	Rigid and flexible Fe–Zr–N magnetic thin films for microwave absorber. Journal of Applied Physics, 2010, 107, 09A505.	2.5	10
56	Distinct optical and magnetic properties of ionic liquid tuned hematite nanocrystals having different exposed (001) facets. RSC Advances, 2014, 4, 593-597.	3.6	10
57	Mechanochemically Processed Ndâ^'Feâ^'Coâ^'Crâ^'B Nanoparticles with High Coercivity and Reduced Spin Reorientation Transition Temperature. ChemPhysChem, 2018, 19, 2370-2379.	2.1	10
58	Optimal ferrofluids for magnetic cooling devices. Scientific Reports, 2021, 11, 24167.	3.3	10
59	Nanocrystallisation of an Fe44.5Co44.5Zr7B4amorphous magnetic alloy. Philosophical Magazine, 2006, 86, 1355-1372.	1.6	9
60	Synthesis and reaction mechanism of high (<i>BH</i>) _{max} exchange coupled Nd ₂ (Fe,Co) ₁₄ B/I±-Fe nanoparticles by a novel one-pot microwave technique. New Journal of Chemistry, 2018, 42, 19214-19223.	2.8	9
61	Bioâ€Inspired Multiple Cycle Healing and Damage Sensing in Elastomer–Magnet Nanocomposites. Macromolecular Chemistry and Physics, 2019, 220, 1900168.	2.2	9
62	On the crystallization kinetics and micro-structural transformations of Fe40Ni38B18Mo4 alloys. Journal of Materials Science, 2008, 43, 635-640.	3.7	8
63	Oriented growth of CoPt nanoparticles by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 609-613.	2.3	8
64	Progressive freezing of finite cluster in locally canted spin Co0.3Zn0.7Fe2O4 spinel ferrite system. Solid State Communications, 2013, 163, 50-54.	1.9	8
65	Instability-Induced Mixing of Ferrofluids in Uniform Magnetic Fields. IEEE Magnetics Letters, 2016, 7, 1-5.	1.1	8
66	Multicaloric Effects in (MnNiSi) _{1â^'<i>x</i>} (Feâ,,Ge) _{<i>x</i>} Alloys. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	8
67	Highly complex magnetic behavior resulting from hierarchical phase separation in AlCo(Cr)FeNi high-entropy alloys. IScience, 2022, 25, 104047.	4.1	8
68	Directed magnetic field induced assembly of high magnetic moment cobalt nanowires. Applied Physics A: Materials Science and Processing, 2010, 98, 821-830.	2.3	7
69	A novel method to synthesize cobalt oxide (Co ₃ O ₄) nanowires from cobalt (Co) nanobowls. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 963-966.	1.8	7
70	Low hysteresis and large room temperature magnetocaloric effect of Gd5Si2.05â^' <i>x</i> Ge1.95â^' <i>x</i> Ni2 <i>x</i> (2 <i>x</i> = 0.08, 0.1) alloys. Journal of Applied Physics, 2013, 113, .	2.5	7
71	One-Step Sintering Process for the Production of Magnetocaloric La(Fe,Si)13-Based Composites. Metals, 2022, 12, 112.	2.3	7
72	A magnetic nanofluid device for excellent passive cooling of light emitting diodes. Energy Reports, 2022, 8, 7401-7419.	5.1	7

#	Article	IF	CITATIONS
73	Magnetic field dependence of electrical resistivity and thermopower in Ni50Mn37Sn13 ribbons. AIP Advances, 2015, 5, .	1.3	6
74	Control of Magnetofluidic Laser Scattering of Aqueous Magnetic Fluids. IEEE Magnetics Letters, 2017, 8, 1-5.	1.1	5
75	Magnetocaloric properties and magnetic cooling performance of low-cost Fe75â^'xCrxAl25 alloys. MRS Communications, 2018, 8, 988-994.	1.8	5
76	Magnetocaloric Properties of Low-Cost Fe and Sn Substituted MnNiSi-Based Alloys Exhibiting a Magnetostructural Transition Near Room Temperature. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	5
77	Optimizing the Magnetocuring of Epoxy Resins via Electromagnetic Additives. Advanced Materials Interfaces, 2021, 8, 2100881.	3.7	5
78	The high frequency magnetic properties of self assembled Fe–Co–Si–N nanogranular thin films. Applied Physics A: Materials Science and Processing, 2010, 100, 257-263.	2.3	3
79	{x}) ⁢/tex-math>⁢/inline-formula>Fe⁢sub>2⁢/sub> TiO ₄ <inline-formula> <tex-math notation="TeX">(cdot)</tex-math></inline-formula>		