Diana Matias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3030930/publications.pdf

Version: 2024-02-01

713013 566801 1,130 24 15 21 citations h-index g-index papers 27 27 27 2439 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The impact of microglial activation on blood-brain barrier in brain diseases. Frontiers in Cellular Neuroscience, 2014, 8, 362.	1.8	408
2	Microglia/Astrocytes–Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors. Frontiers in Cellular Neuroscience, 2018, 12, 235.	1.8	119
3	The Enteric Glia: Identity and Functions. Glia, 2015, 63, 921-935.	2.5	86
4	Glioblastoma Therapy in the Age of Molecular Medicine. Trends in Cancer, 2019, 5, 46-65.	3.8	68
5	PKC signaling in glioblastoma. Cancer Biology and Therapy, 2013, 14, 287-294.	1.5	54
6	Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Seminars in Cancer Biology, 2019, 58, 130-141.	4.3	49
7	Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cellular Oncology (Dordrecht), 2017, 40, 247-261.	2.1	44
8	GBM-Derived Wnt3a Induces M2-Like Phenotype in Microglial Cells Through Wnt/ \hat{l}^2 -Catenin Signaling. Molecular Neurobiology, 2019, 56, 1517-1530.	1.9	44
9	On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias. Science Advances, 2020, 6, .	4.7	41
10	Microglia-glioblastoma interactions: New role for Wnt signaling. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 333-340.	3.3	35
11	Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 722-732.	1.1	33
12	Designing peptide nanoparticles for efficient brain delivery. Advanced Drug Delivery Reviews, 2020, 160, 52-77.	6.6	33
13	Glioblastoma entities express subtle differences in molecular composition and response to treatment. Oncology Reports, 2017, 38, 1341-1352.	1.2	24
14	The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells. Translational Oncology, 2017, 10, 555-569.	1.7	21
15	Microglia in Cancer: For Good or for Bad?. Advances in Experimental Medicine and Biology, 2016, 949, 245-261.	0.8	18
16	The multiple functions of the co-chaperone stress inducible protein 1. Cytokine and Growth Factor Reviews, 2021, 57, 73-84.	3.2	11
17	The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells, 2020, 9, 2685.	1.8	10
18	Glioblastoma Factors Increase the Migration of Human Brain Endothelial Cells <i>In Vitro</i> by Increasing MMP-9/CXCR4 Levels. Anticancer Research, 2020, 40, 2725-2737.	0.5	10

#	Article	lF	CITATIONS
19	Cyclopamine sensitizes glioblastoma cells to temozolomide treatment through Sonic hedgehog pathway. Life Sciences, 2020, 257, 118027.	2.0	10
20	Membrane Elastic Properties during Neural Precursor Cell Differentiation. Cells, 2020, 9, 1323.	1.8	8
21	A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting. ACS Central Science, 2022, 8, 891-904.	5.3	3
22	Glioblastomas and the Special Role of Adhesion Molecules in Their Invasion. , 2014, , 293-315.		1
23	Cellular and Molecular Mechanisms of Mechanotransduction Involved in Metastasis - an in Vitro Study in Hepatocarcinoma and Breast Cancer Cell Lines. Annals of Oncology, 2014, 25, iv573.	0.6	0
24	The Role of the Cytoskeleton in Cell Migration, Its Influence on Stem Cells and the Special Role of GFAP in Glial Functions. , 2015, , 87-117.		0