Kelly Chibale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3030864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimalarial efficacy of MMV390048, an inhibitor of <i>Plasmodium</i> phosphatidylinositol 4-kinase. Science Translational Medicine, 2017, 9, .	12.4	204
2	Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorganic and Medicinal Chemistry, 2005, 13, 3249-3261.	3.0	150
3	The State of the Art in Anti-Malarial Drug Discovery and Development. Current Topics in Medicinal Chemistry, 2011, 11, 1226-1254.	2.1	149
4	The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases. Molecules, 2017, 22, 58.	3.8	139
5	Synthesis and antiplasmodial activity in vitro of new ferrocene–chloroquine analogues. Dalton Transactions, 2003, , 3046-3051.	3.3	130
6	3,5-Diaryl-2-aminopyridines as a Novel Class of Orally Active Antimalarials Demonstrating Single Dose Cure in Mice and Clinical Candidate Potential. Journal of Medicinal Chemistry, 2012, 55, 3479-3487.	6.4	124
7	Antimalarial Pyrido[1,2- <i>a</i>]benzimidazoles. Journal of Medicinal Chemistry, 2011, 54, 4581-4589.	6.4	94
8	Recent Approaches to Chemical Discovery and Development Against Malaria and the Neglected Tropical Diseases Human African Trypanosomiasis and Schistosomiasis. Chemical Reviews, 2014, 114, 11138-11163.	47.7	91
9	Enone– and Chalcone–Chloroquinoline Hybrid Analogues: In Silico Guided Design, Synthesis, Antiplasmodial Activity, in Vitro Metabolism, and Mechanistic Studies. Journal of Medicinal Chemistry, 2011, 54, 3637-3649.	6.4	87
10	Synthesis, Structure and in Vitro Biological Screening of Palladium(II) Complexes of Functionalised Salicylaldimine Thiosemicarbazones as Antimalarial and Anticancer Agents. European Journal of Inorganic Chemistry, 2010, 2010, 3520-3528.	2.0	78
11	Strategies to Combat Multi-Drug Resistance in Tuberculosis. Accounts of Chemical Research, 2021, 54, 2361-2376.	15.6	78
12	Pyrrolo[3,4- <i>c</i>]pyridine-1,3(2 <i>H</i>)-diones: A Novel Antimycobacterial Class Targeting Mycobacterial Respiration. Journal of Medicinal Chemistry, 2015, 58, 9371-9381.	6.4	74
13	Drug repositioning in the treatment of malaria and TB. Future Medicinal Chemistry, 2011, 3, 1413-1426.	2.3	73
14	Novel Orally Active Antimalarial Thiazoles. Journal of Medicinal Chemistry, 2011, 54, 7713-7719.	6.4	72
15	Anticancer Properties of Distinct Antimalarial Drug Classes. PLoS ONE, 2013, 8, e82962.	2.5	67
16	Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis, 2019, 8, 14.	4.9	62
17	Identification of New Human Malaria Parasite <i>Plasmodium falciparum</i> Dihydroorotate Dehydrogenase Inhibitors by Pharmacophore and Structure-Based Virtual Screening. Journal of Chemical Information and Modeling, 2016, 56, 548-562.	5.4	61
18	Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nature Communications, 2021, 12, 269.	12.8	61

#	Article	IF	CITATIONS
19	Synthesis and in vitro evaluation of gold(I) thiosemicarbazone complexes for antimalarial activity. Journal of Inorganic Biochemistry, 2010, 104, 1079-1083.	3.5	59
20	Quinoline Antimalarials Containing a Dibemethin Group Are Active against Chloroquinone-Resistant <i>Plasmodium falciparum</i> and Inhibit Chloroquine Transport via the <i>P. falciparum</i> Chloroquine-Resistance Transporter (PfCRT). Journal of Medicinal Chemistry, 2011, 54, 6956-6968.	6.4	56
21	Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 560-564.	2.2	56
22	Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chemical Biology, 2020, 27, 806-816.e8.	5.2	56
23	Synthesis and antimalarial activity in vitro of new ruthenocene–chloroquine analogues. Dalton Transactions RSC, 2002, , 4426-4433.	2.3	54
24	Fast in vitro methods to determine the speed of action and the stage-specificity of anti-malarials in Plasmodium falciparum. Malaria Journal, 2013, 12, 424.	2.3	54
25	Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chemical Biology, 2020, 27, 158-171.e3.	5.2	54
26	Thiosemicarbazone Salicylaldiminatoâ€Palladium(II) atalyzed Mizoroki–Heck Reactions. Advanced Synthesis and Catalysis, 2010, 352, 1641-1647.	4.3	52
27	Recent updates in the discovery and development of novel antimalarial drug candidates. MedChemComm, 2018, 9, 437-453.	3.4	52
28	Identification of a Potential Antimalarial Drug Candidate from a Series of 2-Aminopyrazines by Optimization of Aqueous Solubility and Potency across the Parasite Life Cycle. Journal of Medicinal Chemistry, 2016, 59, 9890-9905.	6.4	51
29	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	3.3	51
30	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	3.8	49
31	Plasmodial Kinase Inhibitors: License to Cure?. Journal of Medicinal Chemistry, 2018, 61, 8061-8077.	6.4	49
32	Synthesis and Antiplasmodial and Antimycobacterial Evaluation of New Nitroimidazole and Nitroimidazooxazine Derivatives. ACS Medicinal Chemistry Letters, 2013, 4, 128-131.	2.8	47
33	Primaquine–pyrimidine hybrids: Synthesis and dual-stage antiplasmodial activity. European Journal of Medicinal Chemistry, 2015, 101, 266-273.	5.5	47
34	Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. European Journal of Medicinal Chemistry, 2018, 148, 39-53.	5.5	44
35	Medicinal Chemistry Optimization of Antiplasmodial Imidazopyridazine Hits from High Throughput Screening of a SoftFocus Kinase Library: Part 1. Journal of Medicinal Chemistry, 2014, 57, 2789-2798.	6.4	43
36	Synthesis and structure–activity-relationship studies of thiazolidinediones as antiplasmodial inhibitors of the Plasmodium falciparum cysteine protease falcipain-2. European Journal of Medicinal Chemistry, 2015, 90, 507-518.	5.5	43

#	Article	IF	CITATIONS
37	The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Drug Discovery Today, 2020, 25, 772-780.	6.4	43
38	Reversed Chloroquines Based on the 3,4â€Dihydropyrimidinâ€2(1 <i>H</i>)â€one Scaffold: Synthesis and Evaluation for Antimalarial, βâ€Haematin Inhibition, and Cytotoxic Activity. ChemMedChem, 2008, 3, 1649-1653.	3.2	41
39	Structure–Activity-Relationship Studies around the 2-Amino Group and Pyridine Core of Antimalarial 3,5-Diarylaminopyridines Lead to a Novel Series of Pyrazine Analogues with Oral in Vivo Activity. Journal of Medicinal Chemistry, 2013, 56, 8860-8871.	6.4	41
40	Aminopyrazolo[1,5-a]pyrimidines as potential inhibitors of Mycobacterium tuberculosis: Structure activity relationships and ADME characterization. Bioorganic and Medicinal Chemistry, 2015, 23, 7240-7250.	3.0	41
41	UCT943, a Next-Generation Plasmodium falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	40
42	Identification, Characterization, and Optimization of 2,8-Disubstituted-1,5-naphthyridines as Novel <i>Plasmodium falciparum</i> Phosphatidylinositol-4-kinase Inhibitors with in Vivo Efficacy in a Humanized Mouse Model of Malaria. Journal of Medicinal Chemistry, 2018, 61, 5692-5703.	6.4	40
43	Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities. European Journal of Medicinal Chemistry, 2015, 100, 1-9.	5.5	39
44	Safety, Tolerability, Pharmacokinetics, and Antimalarial Activity of the Novel <i>Plasmodium</i> Phosphatidylinositol 4-Kinase Inhibitor MMV390048 in Healthy Volunteers. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	39
45	<i>Plasmodium</i> Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infectious Diseases, 2021, 7, 518-534.	3.8	39
46	Synthesis, antimycobacterial evaluation and pharmacophore modeling of analogues of the natural product formononetin. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2510-2513.	2.2	37
47	Structure–Activity Relationship Studies of Orally Active Antimalarial 3,5-Substituted 2-Aminopyridines. Journal of Medicinal Chemistry, 2012, 55, 11022-11030.	6.4	36
48	Fragment-based design for the development of N-domain-selective angiotensin-1-converting enzyme inhibitors. Clinical Science, 2014, 126, 305-313.	4.3	36
49	Antimalarial Pyrido[1,2- <i>a</i>]benzimidazoles: Lead Optimization, Parasite Life Cycle Stage Profile, Mechanistic Evaluation, Killing Kinetics, and in Vivo Oral Efficacy in a Mouse Model. Journal of Medicinal Chemistry, 2017, 60, 1432-1448.	6.4	36
50	Synthesis of novel keto-ACE analogues as domain-selective angiotensin l-converting enzyme inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4612-4615.	2.2	35
51	Synthesis and Evaluation of a Carbosilane Congener of Ferroquine and Its Corresponding Half-Sandwich Ruthenium and Rhodium Complexes for Antiplasmodial and β-Hematin Inhibition Activity. Organometallics, 2014, 33, 4345-4348.	2.3	35
52	Structure-activity relationship studies of antiplasmodial cyclometallated ruthenium(II), rhodium(III) and iridium(III) complexes of 2-phenylbenzimidazoles. European Journal of Medicinal Chemistry, 2019, 161, 11-21.	5.5	35
53	Synthesis and molecular modeling of a lisinopril–tryptophan analogue inhibitor of angiotensin I-converting enzyme. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4616-4619.	2.2	34
54	Benzoheterocyclic amodiaquine analogues with potent antiplasmodial activity: Synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5046-5050.	2.2	33

#	Article	IF	CITATIONS
55	Medicinal Chemistry Optimization of Antiplasmodial Imidazopyridazine Hits from High Throughput Screening of a SoftFocus Kinase Library: Part 2. Journal of Medicinal Chemistry, 2014, 57, 8839-8848.	6.4	33
56	Design, Synthesis, and Antiplasmodial Activity of Hybrid Compounds Based on (2 <i>R</i> ,3 <i>S</i>)- <i>N</i> -Benzoyl-3-phenylisoserine. ACS Medicinal Chemistry Letters, 2013, 4, 637-641.	2.8	32
57	A Novel Pyrazolopyridine with in Vivo Activity in <i>Plasmodium berghei</i> - and <i>Plasmodium falciparum-</i> Infected Mouse Models from Structure–Activity Relationship Studies around the Core of Recently Identified Antimalarial Imidazopyridazines. Journal of Medicinal Chemistry, 2015, 58, 8713-8722.	6.4	32
58	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	30.7	32
59	Synthesis of new verapamil analogues and their evaluation in combination with rifampicin against Mycobacterium tuberculosis and molecular docking studies in the binding site of efflux protein Rv1258c. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2985-2990.	2.2	31
60	Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. European Journal of Medicinal Chemistry, 2015, 101, 52-62.	5.5	29
61	Synthesis and antiplasmodial evaluation of aziridine–(iso)quinoline hybrids and their ring-opening products. MedChemComm, 2013, 4, 724.	3.4	27
62	Effects of a domain-selective ACE inhibitor in a mouse model of chronic angiotensin II-dependent hypertension. Clinical Science, 2014, 127, 57-63.	4.3	27
63	Synthesis of functionalized 3-, 5-, 6- and 8-aminoquinolines via intermediate (3-pyrrolin-1-yl)- and (2-oxopyrrolidin-1-yl)quinolines and evaluation of their antiplasmodial and antifungal activity. European Journal of Medicinal Chemistry, 2015, 92, 91-102.	5.5	27
64	Plasmepsin Inhibitors in Antimalarial Drug Discovery: Medicinal Chemistry and Target Validation (2000) Tj ETQqC	0 0 rgBT	/Overlock 10 ⁻ 27
65	Synthesis and biological evaluation of 4 arylcoumarin analogues as tubulin-targeting antitumor agents. Bioorganic and Medicinal Chemistry, 2017, 25, 1652-1665.	3.0	26
66	Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents. European Journal of Medicinal Chemistry, 2020, 198, 112330.	5.5	26
67	Synthesis, Antiplasmodial Activity, and β-Hematin Inhibition of Hydroxypyridone–Chloroquine Hybrids. ACS Medicinal Chemistry Letters, 2013, 4, 642-646.	2.8	25
68	Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery. Accounts of Chemical Research, 2017, 50, 1606-1616.	15.6	25
69	Design and synthesis of novel ferrocene-quinoline conjugates and evaluation of their electrochemical and antiplasmodium properties. European Journal of Medicinal Chemistry, 2020, 187, 111963.	5.5	24
70	The Synthesis of Parasitic Cysteine Protease and Trypanothione Reductase Inhibitors. Current Medicinal Chemistry, 2003, 10, 1863-1889.	2.4	23
71	Crystal structures of sampatrilat and sampatrilatâ€Asp in complex with human ACE – a molecular basis for domain selectivity. FEBS Journal, 2018, 285, 1477-1490.	4.7	23
72	New Verapamil Analogs Inhibit Intracellular Mycobacteria without Affecting the Functions of Mycobacterium-Specific T Cells. Antimicrobial Agents and Chemotherapy, 2016, 60, 1216-1225.	3.2	22

#	Article	IF	CITATIONS
73	Novel Antitubercular 6-Dialkylaminopyrimidine Carboxamides from Phenotypic Whole-Cell High Throughput Screening of a SoftFocus Library: Structure–Activity Relationship and Target Identification Studies. Journal of Medicinal Chemistry, 2017, 60, 10118-10134.	6.4	22
74	Semisynthetic Antimycobacterial C-3 Silicate and C-3/C-21 Ester Derivatives of Fusidic Acid: Pharmacological Evaluation and Stability Studies in Liver Microsomes, Rat Plasma, and <i>Mycobacterium tuberculosis</i> culture. ACS Infectious Diseases, 2019, 5, 1634-1644.	3.8	22
75	Antimalarial Pyrido[1,2-a]benzimidazole Derivatives with Mannich Base Side Chains: Synthesis, Pharmacological Evaluation, and Reactive Metabolite Trapping Studies. ACS Infectious Diseases, 2019, 5, 372-384.	3.8	22
76	Antimalarial aminothiazoles and aminopyridines from phenotypic whole-cell screening of a SoftFocus [®] library. Future Medicinal Chemistry, 2012, 4, 2265-2277.	2.3	21
77	Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III) aminoquinoline-benzimidazole hybrid complexes. European Journal of Medicinal Chemistry, 2020, 206, 112694.	5.5	21
78	4-Aminoquinoline Antimalarials Containing a Benzylmethylpyridylmethylamine Group Are Active against Drug Resistant <i>Plasmodium falciparum</i> and Exhibit Oral Activity in Mice. Journal of Medicinal Chemistry, 2017, 60, 10245-10256.	6.4	20
79	The Design and Development of a Potent and Selective Novel Diprolyl Derivative That Binds to the N-Domain of Angiotensin-I Converting Enzyme. Journal of Medicinal Chemistry, 2018, 61, 344-359.	6.4	20
80	Novel antimycobacterial C-21 amide derivatives of the antibiotic fusidic acid: synthesis, pharmacological evaluation and rationalization of media-dependent activity using molecular docking studies in the binding site of human serum albumin. MedChemComm, 2019, 10, 961-969.	3.4	20
81	Economic drug discovery and rational medicinal chemistry for tropical diseases. Pure and Applied Chemistry, 2005, 77, 1957-1964.	1.9	19
82	Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1214-1217.	2.2	19
83	Antimalarial benzoheterocyclic 4-aminoquinolines: Structure–activity relationship, in vivo evaluation, mechanistic and bioactivation studies. Bioorganic and Medicinal Chemistry, 2015, 23, 5419-5432.	3.0	19
84	Synthesis and biological characterisation of ester and amide derivatives of fusidic acid as antiplasmodial agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 658-661.	2.2	19
85	Identification of Fast-Acting 2,6-Disubstituted Imidazopyridines That Are Efficacious in the in Vivo Humanized <i>Plasmodium falciparum</i> NODscidIL2Rγ ^{<i>null</i>} Mouse Model of Malaria. Journal of Medicinal Chemistry, 2018, 61, 4213-4227.	6.4	19
86	Potent Plasmodium falciparum gametocytocidal compounds identified by exploring the kinase inhibitor chemical space for dual active antimalarials. Journal of Antimicrobial Chemotherapy, 2018, 73, 1279-1290.	3.0	19
87	Azaaurones as Potent Antimycobacterial Agents Active against MDR―and XDRâ€∓B. ChemMedChem, 2019, 14, 1537-1546.	3.2	19
88	Synthesis and in Vitro and in Vivo Pharmacological Evaluation of New 4-Aminoquinoline-Based Compounds. ACS Medicinal Chemistry Letters, 2013, 4, 1198-1202.	2.8	18
89	Synthesis of fusidic acid bioisosteres as antiplasmodial agents and molecular docking studies in the binding site of elongation factor-G. MedChemComm, 2015, 6, 2023-2028.	3.4	18
90	Design, Synthesis, and Evaluation of Novel Hybrid Efflux Pump Inhibitors for Use against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 714-725.	3.8	18

#	Article	IF	CITATIONS
91	Benzimidazole Derivatives Are Potent against Multiple Life Cycle Stages of <i>Plasmodium falciparum</i> Malaria Parasites. ACS Infectious Diseases, 2021, 7, 1945-1955.	3.8	18
92	Exploration of thiaheterocyclic <i>h</i> HDAC6 inhibitors as potential antiplasmodial agents. Future Medicinal Chemistry, 2017, 9, 357-364.	2.3	17
93	The Next Generation Scientist program: capacity-building for future scientific leaders in low- and middle-income countries. BMC Medical Education, 2018, 18, 233.	2.4	17
94	Synthesis and synergistic antimycobacterial screening of chlorpromazine and its metabolites. MedChemComm, 2014, 5, 502-506.	3.4	16
95	Pharmacologically active metabolites, combination screening and target identification-driven drug repositioning in antituberculosis drug discovery. Bioorganic and Medicinal Chemistry, 2014, 22, 4453-4461.	3.0	16
96	Esterase phenotyping in human liver <i>in vitro</i> : specificity of carboxylesterase inhibitors. Xenobiotica, 2016, 46, 862-867.	1.1	16
97	Interaction of the red pigment-concentrating hormone of the crustacean Daphnia pulex, with its cognate receptor, Dappu-RPCHR: A nuclear magnetic resonance and modeling study. International Journal of Biological Macromolecules, 2018, 106, 969-978.	7.5	16
98	Multistage Antiplasmodium Activity of Astemizole Analogues and Inhibition of Hemozoin Formation as a Contributor to Their Mode of Action. ACS Infectious Diseases, 2019, 5, 303-315.	3.8	16
99	Synthesis, Structure–Activity Relationship, and Mechanistic Studies of Aminoquinazolinones Displaying Antimycobacterial Activity. ACS Infectious Diseases, 2020, 6, 1951-1964.	3.8	16
100	Antimalarial Benzimidazole Derivatives Incorporating Phenolic Mannich Base Side Chains Inhibit Microtubule and Hemozoin Formation: Structure–Activity Relationship and <i>In Vivo</i> Oral Efficacy Studies. Journal of Medicinal Chemistry, 2021, 64, 5198-5215.	6.4	16
101	Developing Synergistic Drug Combinations To Restore Antibiotic Sensitivity in Drug-Resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	16
102	Spiropyrimidinetrione DNA Gyrase Inhibitors with Potent and Selective Antituberculosis Activity. Journal of Medicinal Chemistry, 2022, 65, 6903-6925.	6.4	16
103	Cell-Based Medicinal Chemistry Optimization of High Throughput Screening Hits for Orally Active Antimalarials. Part 2: Hits from SoftFocus Kinase and other Libraries. Journal of Medicinal Chemistry, 2013, 56, 7750-7754.	6.4	15
104	Antischistosomal Activity of Pyrido[1,2- <i>a</i>]benzimidazole Derivatives and Correlation with Inhibition of β-Hematin Formation. ACS Infectious Diseases, 2017, 3, 411-420.	3.8	15
105	Synthesis and evaluation of the performance of a small molecule library based on diverse tropane-related scaffolds. Bioorganic and Medicinal Chemistry, 2020, 28, 115442.	3.0	15
106	High-Throughput Crystallography Reveals Boron-Containing Inhibitors of a Penicillin-Binding Protein with Di- and Tricovalent Binding Modes. Journal of Medicinal Chemistry, 2021, 64, 11379-11394.	6.4	15
107	Structure–Activity Relationship Studies of Orally Active Antimalarial 2,4-Diamino-thienopyrimidines. Journal of Medicinal Chemistry, 2015, 58, 7572-7579.	6.4	14
108	Structural Basis for Inhibitor Potency and Selectivity of <i>Plasmodium falciparum</i> Phosphatidylinositol 4-Kinase Inhibitors. ACS Infectious Diseases, 2020, 6, 3048-3063.	3.8	14

#	Article	IF	CITATIONS
109	The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chemical Biology, 2022, 29, 824-839.e6.	5.2	14
110	The adipokinetic hormones and their cognate receptor from the desert locust, <i>Schistocerca gregaria</i> : solution structure of endogenous peptides and models of their binding to the receptor. PeerJ, 2019, 7, e7514.	2.0	14
111	Kojic acid derived hydroxypyridinone–chloroquine hybrids: Synthesis, crystal structure, antiplasmodial activity and β-haematin inhibition. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3263-3267.	2.2	13
112	Cocrystal and Salt Forms of an Imidazopyridazine Antimalarial Drug Lead. Journal of Pharmaceutical Sciences, 2019, 108, 2349-2357.	3.3	13
113	New Amidated 3,6-Diphenylated Imidazopyridazines with Potent Antiplasmodium Activity Are Dual Inhibitors of <i>Plasmodium</i> Phosphatidylinositol-4-kinase and cGMP-Dependent Protein Kinase. ACS Infectious Diseases, 2021, 7, 34-46.	3.8	13
114	1,3-Diarylpyrazolyl-acylsulfonamides as Potent Anti-tuberculosis Agents Targeting Cell Wall Biosynthesis in <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2021, 64, 12790-12807.	6.4	13
115	Spiropyrimidinetriones: a Class of DNA Gyrase Inhibitors with Activity against Mycobacterium tuberculosis and without Cross-Resistance to Fluoroquinolones. Antimicrobial Agents and Chemotherapy, 2022, 66, e0219221.	3.2	13
116	Effect of Varying the Anionic Component of a Copper(I) Catalyst on Homologation of Arylacetylenes to Allenes by the Mannich Reaction. European Journal of Organic Chemistry, 2008, 2008, 43-46.	2.4	12
117	Pharmacokinetic evaluation of lisinopril-tryptophan, a novel C-domain ACE inhibitor. European Journal of Pharmaceutical Sciences, 2014, 56, 113-119.	4.0	12
118	The Dynamic Nonprime Binding of Sampatrilat to the C-Domain of Angiotensin-Converting Enzyme. Journal of Chemical Information and Modeling, 2016, 56, 2486-2494.	5.4	12
119	Design, synthesis, and <i>In vitro</i> antituberculosis activity of 2(5 <i>H</i>)-Furanone derivatives. IUBMB Life, 2016, 68, 612-620.	3.4	12
120	Intestinal Transport Characteristics and Metabolism of C-Glucosyl Dihydrochalcone, Aspalathin. Molecules, 2017, 22, 554.	3.8	12
121	Structure–Activity Relationship and <i>in Vitro</i> Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Studies of <i>N</i> -aryl 3-Trifluoromethyl Pyrido[1,2- <i>a</i>]benzimidazoles That Are Efficacious in a Mouse Model of Schistosomiasis. ACS Infectious Diseases, 2019, 5, 418-429.	3.8	12
122	Pharmacokinetics and Organ Distribution of C-3 Alkyl Esters as Potential Antimycobacterial Prodrugs of Fusidic Acid. ACS Infectious Diseases, 2020, 6, 459-466.	3.8	12
123	New ketomethylene inhibitor analogues: synthesis and assessment of structural determinants for N-domain selective inhibition of angiotensin-converting enzyme. Biological Chemistry, 2012, 393, 485-493.	2.5	11
124	Antiplasmodial activity, in vivo pharmacokinetics and anti-malarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model. Malaria Journal, 2015, 14, 505.	2.3	11
125	3D-QSAR Modeling and Synthesis of New Fusidic Acid Derivatives as Antiplasmodial Agents. Journal of Chemical Information and Modeling, 2018, 58, 1553-1560.	5.4	11
126	Incorporation of an intramolecular hydrogen bonding motif in the side chain of antimalarial benzimidazoles. MedChemComm, 2019, 10, 450-455.	3.4	11

#	Article	IF	CITATIONS
127	Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and <i>In Vivo</i> Efficacy in the <i>Plasmodium falciparum</i> NSG Mouse Model. Journal of Medicinal Chemistry, 2020, 63, 13013-13030.	6.4	11
128	Chemotherapy for human schistosomiasis: how far have we come? What's new? Where do we go from here?. RSC Medicinal Chemistry, 2020, 11, 455-490.	3.9	11
129	Structure-activity relationship analyses of fusidic acid derivatives highlight crucial role of the C-21 carboxylic acid moiety to its anti-mycobacterial activity. Bioorganic and Medicinal Chemistry, 2020, 28, 115530.	3.0	11
130	Expanding the Activity Profile of Pyrido[1,2- <i>a</i>]benzimidazoles: Synthesis and Evaluation of Novel <i>N</i> ¹ -1-Phenylethanamine Derivatives against <i>Schistosoma mansoni</i> . ACS Infectious Diseases, 2021, 7, 1032-1043.	3.8	11
131	Identification and Profiling of a Novel Diazaspiro[3.4]octane Chemical Series Active against Multiple Stages of the Human Malaria Parasite <i>Plasmodium falciparum</i> and Optimization Efforts. Journal of Medicinal Chemistry, 2021, 64, 2291-2309.	6.4	11
132	Identification of steroid-like natural products as antiplasmodial agents by 2D and 3D similarity-based virtual screening. MedChemComm, 2017, 8, 1152-1157.	3.4	10
133	Synthesis and biological evaluation of aryl-oxadiazoles as inhibitors of Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1758-1764.	2.2	10
134	Antiplasmodial imidazopyridazines: structure–activity relationship studies lead to the identification of analogues with improved solubility and hERG profiles. MedChemComm, 2018, 9, 1733-1745.	3.4	10
135	Intrinsic fluorescence properties of antimalarial pyrido[1,2-a]benzimidazoles facilitate subcellular accumulation and mechanistic studies in the human malaria parasite Plasmodium falciparum. Organic and Biomolecular Chemistry, 2020, 18, 8668-8676.	2.8	10
136	Lerisetron Analogues with Antimalarial Properties: Synthesis, Structure–Activity Relationship Studies, and Biological Assessment. ACS Omega, 2020, 5, 6967-6982.	3.5	10
137	Benzoheterocyclic Oxime Carbamates Active against <i>Mycobacterium tuberculosis</i> : Synthesis, Structure–Activity Relationship, Metabolism, and Biology Triaging. Journal of Medicinal Chemistry, 2021, 64, 9444-9457.	6.4	10
138	Evaluation of Ferrocenyl ontaining Benzothiazoles as Potential Antiplasmodial Agents. European Journal of Inorganic Chemistry, 2017, 2017, 242-246.	2.0	9
139	Antimalarial Lead-Optimization Studies on a 2,6-Imidazopyridine Series within a Constrained Chemical Space To Circumvent Atypical Dose–Response Curves against Multidrug Resistant Parasite Strains. Journal of Medicinal Chemistry, 2018, 61, 9371-9385.	6.4	9
140	Antitubercular 2-Pyrazolylpyrimidinones: Structure–Activity Relationship and Mode-of-Action Studies. Journal of Medicinal Chemistry, 2021, 64, 719-740.	6.4	9
141	Rv0684/ <i>fusA1</i> , an Essential Gene, Is the Target of Fusidic Acid and Its Derivatives in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2021, 7, 2437-2444.	3.8	9
142	Fostering drug discovery and development in Africa. Nature Medicine, 2022, 28, 1523-1526.	30.7	9
143	Antiplasmodial drug targets: a patent review (2000 – 2013). Expert Opinion on Therapeutic Patents, 2016, 26, 107-130.	5.0	8
144	Reversed isoniazids: Design, synthesis and evaluation against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2018, 26, 833-844.	3.0	8

#	Article	IF	CITATIONS
145	Five Solid Forms of a Potent Imidazopyridazine Antimalarial Drug Lead: A Preformulation Study. Crystal Growth and Design, 2019, 19, 4683-4697.	3.0	8
146	Structure–Activity Relationship Studies and <i>Plasmodium</i> Life Cycle Profiling Identifies Pan-Active <i>N</i> -Aryl-3-trifluoromethyl Pyrido[1,2- <i>a</i>]benzimidazoles Which Are Efficacious in an <i>in Vivo</i> Mouse Model of Malaria. Journal of Medicinal Chemistry, 2019, 62, 1022-1035.	6.4	8
147	Alternative solid-state forms of a potent antimalarial aminopyridine: X-ray crystallographic, thermal and solubility aspects. CrystEngComm, 2014, 16, 5781-5792.	2.6	7
148	Bioisosteric ferrocenyl-containing quinolines with antiplasmodial and antitrichomonal properties. Dalton Transactions, 2016, 45, 19086-19095.	3.3	7
149	A preformulation co-crystal screening case study: Polymorphic co-crystals of an imidazopyridazine antimalarial drug lead with the coformer succinic acid. Journal of Molecular Structure, 2020, 1204, 127561.	3.6	7
150	Medicinal Chemistry Out of Africa. Journal of Medicinal Chemistry, 2021, 64, 10513-10516.	6.4	7
151	Structure–Activity Relationship Studies Reveal New Astemizole Analogues Active against <i>Plasmodium falciparum</i> In Vitro. ACS Medicinal Chemistry Letters, 2021, 12, 1333-1341.	2.8	7
152	Exploring the Antiplasmodial 2â€Aminopyridines as Potential Antitrypanosomal Agents. ChemMedChem, 2019, 14, 2034-2041.	3.2	6
153	Structure elaboration of isoniazid: synthesis, in silico molecular docking and antimycobacterial activity of isoniazid–pyrimidine conjugates. Molecular Diversity, 2020, 24, 949-955.	3.9	6
154	Molecular Structure of an Unexpected Binuclear Salicylaldimine Semicarbazone Palladium(II) Complex. Journal of Chemical Crystallography, 2011, 41, 747-750.	1.1	5
155	Synthesis of metergoline analogues and their evaluation as antiplasmodial agents. MedChemComm, 2014, 5, 165-170.	3.4	5
156	Investigating Sulfoxide-to-Sulfone Conversion as a Prodrug Strategy for a Phosphatidylinositol 4-Kinase Inhibitor in a Humanized Mouse Model of Malaria. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	5
157	New developments in antiinfectives research for tropical infectious diseases. Bioorganic and Medicinal Chemistry, 2015, 23, 5085-5086.	3.0	4
158	Carbonâ€14 radiolabeling and tissue distribution evaluation of MMV390048. Journal of Labelled Compounds and Radiopharmaceuticals, 2016, 59, 680-688.	1.0	4
159	Antimalarial Activities of (<i>Z</i>)-2-(Nitroheteroarylmethylene)-3(2 <i>H</i>)-Benzofuranone Derivatives: <i>In Vitro</i> and <i>In Vivo</i> Assessment and β-Hematin Formation Inhibition Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, e0268320.	3.2	4
160	Quinine fever. Nature Chemistry, 2022, , .	13.6	4
161	Pharmacologically Relevant Bifunctional Compounds Containing Chloroquinoline and Dihydropyrimidone Moieties: Syntheses and Crystal Structures of a Target Molecule and Selected Intermediates. Journal of Chemical Crystallography, 2009, 39, 753-760.	1.1	3
162	Preparation and Physicochemical Characterization of an Inclusion Complex Between Dimethylated β-Cyclodextrin and a Drug Lead From a New Class of Orally Active Antimalarial 3,5-Diaryl-2-Aminopyridines. Journal of Pharmaceutical Sciences, 2016, 105, 3344-3350.	3.3	3

#	Article	IF	CITATIONS
163	Characterisation of artemisinin–chloroquinoline hybrids for potential metabolic liabilities. Xenobiotica, 2016, 46, 234-240.	1.1	3
164	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes. Molecules, 2017, 22, 743.	3.8	3
165	Probing the Requirements for Dual Angiotensin-Converting Enzyme C-Domain Selective/Neprilysin Inhibition. Journal of Medicinal Chemistry, 2022, 65, 3371-3387.	6.4	3
166	A Chemical Approach Towards Understanding the Mechanism and Reversal of Drug Resistance in Plasmodium falciparum: Is it Viable?. IUBMB Life, 2002, 53, 249-252.	3.4	2
167	Structure–activity relationship studies of antiplasmodial aminomethylthiazoles. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5207-5211.	2.2	2
168	Data for the homology modelling of the red pigment-concentrating hormone receptor (Dappu-RPCHR) of the crustacean Daphnia pulex , and docking of its cognate agonist (Dappu-RPCH). Data in Brief, 2017, 15, 941-947.	1.0	2
169	Implications of <i>Mycobacterium tuberculosis</i> Metabolic Adaptability on Drug Discovery and Development. ACS Infectious Diseases, 2022, 8, 414-421.	3.8	2
170	Innovation Experiences from Africa-Led Drug Discovery at the Holistic Drug Discovery and Development (H3D) Centre. ACS Medicinal Chemistry Letters, 2022, 13, 1221-1230.	2.8	2
171	A Pharmacokinetic Study of Antimalarial 3,5-Diaryl-2-aminopyridine Derivatives. Malaria Research and Treatment, 2015, 2015, 1-5.	2.0	1
172	Medicinal chemistry progression of antimalarial hits from phenotypic whole cell screening of SoftFocus libraries. Annual Reports in Medicinal Chemistry, 2019, , 25-71.	0.9	1
173	Stuart Warren (24 Dec 1938–22 Mar 2020). Organic and Biomolecular Chemistry, 2020, 18, 7236-7237.	2.8	1
174	Synthesis and In Vitro Antiprotozoan Evaluation of 4-/8-Aminoquinoline-based Lactams and Tetrazoles. Molecules, 2020, 25, 5941.	3.8	1
175	Chemogenomic Fingerprints Associated with Stage-Specific Gametocytocidal Compound Action against Human Malaria Parasites. ACS Infectious Diseases, 2021, 7, 2904-2916.	3.8	1
176	Exploring the transmission-blocking activity of antiplasmodial 3,6-diarylated imidazopyridazines. Transactions of the Royal Society of South Africa, 0, , 1-9.	1.1	1
177	Structural Rigidification of <i>N</i> -Aryl-pyrroles into Indoles Active against Intracellular and Drug-Resistant Mycobacteria. ACS Medicinal Chemistry Letters, 2022, 13, 63-69.	2.8	1
178	Antimalarial Pyrido[1,2- <i>a</i>]benzimidazoles Exert Strong Parasiticidal Effects by Achieving High Cellular Uptake and Suppressing Heme Detoxification. ACS Infectious Diseases, 2022, 8, 1700-1710.	3.8	1
179	Keystone Malaria Symposium 2022: a vibrant discussion of progress made and challenges ahead from drug discovery to treatment. Trends in Parasitology, 2022, 38, 711-718.	3.3	1
180	Crystallisation of an Unexpected Trinuclear Heteronuclear Carbosilane Congener of Ferroquine. Journal of Chemical Crystallography, 2015, 45, 202-206.	1.1	0

#	Article	IF	CITATIONS
181	Cell-Based Medicinal Chemistry Optimization of High Throughput Screening Hits towards Orally Active Antimalarial and Antituberculosis Agents. Proceedings (mdpi), 2017, 1, .	0.2	0
182	Introduction to the 1st Molecules Medicinal Chemistry Symposium (MMCS), Barcelona, 8 September 2017. Proceedings (mdpi), 2017, 1, .	0.2	0
183	Special Issue on Epigenetic Modulation Approaches in Infectious Diseases. ACS Infectious Diseases, 2020, 6, 2813-2814.	3.8	0
184	Simplifying Submission Requirements for the Journal of Medicinal Chemistry. Journal of Medicinal Chemistry, 2021, 64, 7877-7878.	6.4	0