Anna Barnard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3030801/publications.pdf

Version: 2024-02-01

24 papers 1,094 citations

16 h-index 610482 24 g-index

28 all docs

28 docs citations

28 times ranked 1621 citing authors

#	Article	IF	CITATIONS
1	Degradable Self-Assembling Dendrons for Gene Delivery: Experimental and Theoretical Insights into the Barriers to Cellular Uptake. Journal of the American Chemical Society, 2011, 133, 20288-20300.	6.6	166
2	Selfâ€Assembled Multivalency: Dynamic Ligand Arrays for Highâ€Affinity Binding. Angewandte Chemie - International Edition, 2012, 51, 6572-6581.	7.2	157
3	Mallard Blue: A High-Affinity Selective Heparin Sensor That Operates in Highly Competitive Media. Journal of the American Chemical Society, 2013, 135, 2911-2914.	6.6	107
4	A high throughput screen for next-generation leads targeting malaria parasite transmission. Nature Communications, $2018, 9, 3805$.	5.8	92
5	Selective and Potent Proteomimetic Inhibitors of Intracellular Protein–Protein Interactions. Angewandte Chemie - International Edition, 2015, 54, 2960-2965.	7.2	82
6	Less is more – multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chemical Science, 2010, 1, 393.	3.7	76
7	Selfâ€Assembling Ligands for Multivalent Nanoscale Heparin Binding. Angewandte Chemie - International Edition, 2011, 50, 4675-4679.	7.2	66
8	Controlled Release of DNA From Photoresponsive Hyperbranched Polyglycerols with Oligoamine Shells. Macromolecular Bioscience, 2011, 11, 1736-1746.	2.1	46
9	Double-degradable responsive self-assembled multivalent arrays – temporary nanoscale recognition between dendrons and DNA. Organic and Biomolecular Chemistry, 2014, 12, 446-455.	1.5	33
10	Polyglycerol-based amphiphilic dendrons as potential siRNA carriers for in vivo applications. Journal of Materials Chemistry B, 2014, 2, 2153-2167.	2.9	32
11	Orthogonal functionalisation of α-helix mimetics. Organic and Biomolecular Chemistry, 2014, 12, 6794-6799.	1.5	24
12	Selective and Potent Proteomimetic Inhibitors of Intracellular Protein–Protein Interactions. Angewandte Chemie, 2015, 127, 3003-3008.	1.6	24
13	Aromatic Oligoamide Foldamers with a "Wet Edge―as Inhibitors of the αâ€Helixâ€Mediated p53– <i>h</i> Protein–Protein Interaction. European Journal of Organic Chemistry, 2013, 2013, 3504-3512.	DM2	23
14	Enantioselective lactate binding by chiral tripodal anion hosts derived from amino acids. Organic and Biomolecular Chemistry, 2009, 7, 1554.	1.5	21
15	Modulators of protein–protein interactions as antimicrobial agents. RSC Chemical Biology, 2021, 2, 387-409.	2.0	19
16	Multivalent helix mimetics for PPI-inhibition. Organic and Biomolecular Chemistry, 2015, 13, 258-264.	1.5	15
17	Interfacing native and non-native peptides: using Affimers to recognise \hat{l}_{\pm} -helix mimicking foldamers. Chemical Communications, 2017, 53, 2834-2837.	2.2	15
18	Effects of a PEG additive on the biomolecular interactions of self-assembled dendron nanostructures. Organic and Biomolecular Chemistry, 2012, 10, 8403.	1.5	12

#	Article	IF	CITATIONS
19	Structure–Activity Relationship Studies of a Novel Class of Transmission Blocking Antimalarials Targeting Male Gametes. Journal of Medicinal Chemistry, 2020, 63, 2240-2262.	2.9	11
20	Design, Synthesis, and Conformational Analysis of Oligobenzanilides as Multifacial α-Helix Mimetics. Organic Letters, 2019, 21, 4433-4438.	2.4	9
21	Probing dendron structure and nanoscale self-assembly using computer-aided analysis of EPR spectra. New Journal of Chemistry, 2012, 36, 469-476.	1.4	8
22	Probing Protein Surfaces: QSAR Analysis with Helix Mimetics. ChemBioChem, 2016, 17, 768-773.	1.3	5
23	Characterization of the Key Determinants of Phd Antitoxin Mediated Doc Toxin Inactivation in <i>Salmonella</i> . ACS Chemical Biology, 0, , .	1.6	1
24	Macromol. Biosci. 12/2011. Macromolecular Bioscience, 2011, 11, 1735-1735.	2.1	0