List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3030650/publications.pdf

Version: 2024-02-01

RDUNO KVEWSKI

#	Article	IF	CITATIONS
1	An efficient protocol for in vivo labeling of proliferating epithelial cells. Journal of Immunological Methods, 2018, 457, 82-86.	0.6	Ο
2	lslet-reactive CD8 ⁺ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Science Immunology, 2018, 3, .	5.6	171
3	T cells specific for post-translational modifications escape intrathymic tolerance induction. Nature Communications, 2018, 9, 353.	5.8	66
4	Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating NaÃ⁻ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	7.2	177
5	Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature, 2018, 559, 627-631.	13.7	221
6	Dissecting and modeling the emergent murine TEC compartment during ontogeny. European Journal of Immunology, 2017, 47, 1153-1159.	1.6	13
7	Revisiting the Road Map of Medullary Thymic Epithelial Cell Differentiation. Journal of Immunology, 2017, 199, 3488-3503.	0.4	32
8	Epitope-Specific Tolerance Modes Differentially Specify Susceptibility to Proteolipid Protein-Induced Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2017, 8, 1511.	2.2	10
9	Myelin oligodendrocyte glycoprotein induces incomplete tolerance of CD4 ⁺ TÂcells specific for both a myelin and a neuronal selfâ€antigen in mice. European Journal of Immunology, 2016, 46, 2247-2259.	1.6	13
10	A Thymic Epithelial Stem Cell Pool Persists throughout Ontogeny and Is Modulated by TGF-β. Cell Reports, 2016, 17, 448-457.	2.9	12
11	Re-examining the Nature and Function of Self-Reactive T cells. Trends in Immunology, 2016, 37, 114-125.	2.9	68
12	Evolutionary conserved gene co-expression drives generation ofÂself-antigen diversity in medullary thymic epithelial cells. Journal of Autoimmunity, 2016, 67, 65-75.	3.0	19
13	Pillars Article: Promiscuous Gene Expression in Medullary Thymic Epithelial Cells Mirrors the Peripheral Self. Nat. Immunol. 2001. 2: 1032-1039. Journal of Immunology, 2016, 196, 2915-22.	0.4	3
14	Genome-wide gene expression profiling of homeodomain-interacting protein kinase 2 deficient medullary thymic epithelial cells. Genomics Data, 2015, 6, 48-50.	1.3	0
15	3D Organotypic Co-culture Model Supporting Medullary Thymic Epithelial Cell Proliferation, Differentiation and Promiscuous Gene Expression. Journal of Visualized Experiments, 2015, , e52614.	0.2	6
16	Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction. Immunity, 2015, 42, 1048-1061.	6.6	201
17	Materno-Fetal Transfer of Preproinsulin Through the Neonatal Fc Receptor Prevents Autoimmune Diabetes. Diabetes, 2015, 64, 3532-3542.	0.3	24
18	Homeodomain-Interacting Protein Kinase 2, a Novel Autoimmune Regulator Interaction Partner, Modulates Promiscuous Gene Expression in Medullary Thymic Epithelial Cells. Journal of Immunology, 2015, 194, 921-928.	0.4	28

#	Article	IF	CITATIONS
19	Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nature Immunology, 2015, 16, 933-941.	7.0	148
20	Central T cell tolerance: Identification of tissue-restricted autoantigens in the thymus HLA-DR peptidome. Journal of Autoimmunity, 2015, 60, 12-19.	3.0	27
21	Thymic Epithelial Cells Are a Nonredundant Source of Wnt Ligands for Thymus Development. Journal of Immunology, 2015, 195, 5261-5271.	0.4	19
22	Misinitiation of intrathymic <i>MARTâ€1</i> transcription and biased TCR usage explain the high frequency of MARTâ€1â€specific T cells. European Journal of Immunology, 2014, 44, 2811-2821.	1.6	44
23	Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nature Reviews Immunology, 2014, 14, 377-391.	10.6	1,043
24	Love Is in the Aire: mTECs Share Their Assets. Immunity, 2014, 41, 343-345.	6.6	11
25	Adult Thymus Contains FoxN1â^' Epithelial Stem Cells that Are Bipotent for Medullary and Cortical Thymic Epithelial Lineages. Immunity, 2014, 41, 257-269.	6.6	83
26	An Organotypic Coculture Model Supporting Proliferation and Differentiation of Medullary Thymic Epithelial Cells and Promiscuous Gene Expression. Journal of Immunology, 2013, 190, 1085-1093.	0.4	42
27	An evolutionarily conserved mutual interdependence between <scp>A</scp> ire and micro <scp>RNA</scp> s in promiscuous gene expression. European Journal of Immunology, 2013, 43, 1769-1778.	1.6	48
28	Overlapping gene coexpression patterns in human medullary thymic epithelial cells generate self-antigen diversity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3497-505.	3.3	70
29	Editorial Overview. Current Opinion in Immunology, 2012, 24, 67-70.	2.4	3
30	Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood, 2011, 117, 4449-4459.	0.6	89
31	DNA methylation signatures of the AIRE promoter in thymic epithelial cells, thymomas and normal tissues. Molecular Immunology, 2011, 49, 518-526.	1.0	30
32	Association of an SNP with intrathymic transcription of TSHR and Graves' disease: a role for defective thymic tolerance. Human Molecular Genetics, 2011, 20, 3415-3423.	1.4	74
33	Impaired thymic tolerance to $\hat{I}\pm$ -myosin directs autoimmunity to the heart in mice and humans. Journal of Clinical Investigation, 2011, 121, 1561-1573.	3.9	168
34	Obligation for cell line authentication: Appeal for concerted action. International Journal of Cancer, 2010, 126, 1-1.	2.3	23
35	Editorial. International Journal of Cancer, 2010, 127, n/a-n/a.	2.3	4
36	How thymic antigen presenting cells sample the body's self-antigens. Current Opinion in Immunology, 2010, 22, 592-600.	2.4	92

#	Article	IF	CITATIONS
37	Epigenetic regulation of promiscuous gene expression in thymic medullary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19426-19431.	3.3	49
38	Aire, Master of Many Trades. Cell, 2010, 140, 24-26.	13.5	38
39	The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. Journal of Experimental Medicine, 2009, 206, 1505-1513.	4.2	218
40	Antigen presentation in the thymus for positive selection and central tolerance induction. Nature Reviews Immunology, 2009, 9, 833-844.	10.6	452
41	<i>How Promiscuity Promotes Tolerance: The Case of Myasthenia Gravis</i> . Annals of the New York Academy of Sciences, 2008, 1132, 157-162.	1.8	11
42	The Thymus Medulla Slowly Yields Its Secrets. Annals of the New York Academy of Sciences, 2008, 1143, 105-122.	1.8	43
43	Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 657-662.	3.3	184
44	A Breath of Aire for the Periphery. Science, 2008, 321, 776-777.	6.0	5
45	Expression of Tumor-Associated Differentiation Antigens, MUC1 Glycoforms and CEA, in Human Thymic Epithelial Cells: Implications for Self-Tolerance and Tumor Therapy. Cancer Research, 2007, 67, 3919-3926.	0.4	71
46	Highly variable expression of tissue-restricted self-antigens in human thymus: Implications for self-tolerance and autoimmunity. European Journal of Immunology, 2007, 37, 838-848.	1.6	64
47	Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells. European Journal of Immunology, 2007, 37, 3363-3372.	1.6	135
48	An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature, 2007, 448, 934-937.	13.7	167
49	A CENTRAL ROLE FOR CENTRAL TOLERANCE. Annual Review of Immunology, 2006, 24, 571-606.	9.5	631
50	Expression profiling of autoimmune regulator AIRE mRNA in a comprehensive set of human normal and neoplastic tissues. Immunology Letters, 2006, 106, 172-179.	1.1	31
51	Conflicts of interest: The responsibility of the authors and editors of theInternational Journal of Cancer. International Journal of Cancer, 2006, 118, 2919-2919.	2.3	3
52	Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8453-8458.	3.3	92
53	Expression of a Natural Tumor Antigen by Thymic Epithelial Cells Impairs the Tumor-Protective CD4+ T-Cell Repertoire. Cancer Research, 2005, 65, 6443-6449.	0.4	55
54	Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. Journal of Experimental Medicine, 2005, 202, 33-45.	4.2	498

#	Article	IF	CITATIONS
55	Medullary Epithelial Cells of the Human Thymus Express a Highly Diverse Selection of Tissue-specific Genes Colocalized in Chromosomal Clusters. Journal of Experimental Medicine, 2004, 199, 155-166.	4.2	317
56	Self-representation in the thymus: an extended view. Nature Reviews Immunology, 2004, 4, 688-698.	10.6	319
57	CREB function is required for normal thymic cellularity and post-irradiation recovery. European Journal of Immunology, 2004, 34, 1961-1971.	1.6	21
58	Regulating self-tolerance by deregulating gene expression. Current Opinion in Immunology, 2004, 16, 741-745.	2.4	50
59	Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Medicine, 2003, 9, 1151-1157.	15.2	301
60	Dynamic Changes During the Immune Response in T Cell–Antigen-presenting Cell Clusters Isolated from Lymph Nodes. Journal of Experimental Medicine, 2003, 197, 269-280.	4.2	56
61	Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends in Immunology, 2002, 23, 364-371.	2.9	180
62	Response to 'Lymphoid organs contain diverse cells expressing self-molecules'. Nature Immunology, 2002, 3, 336-336.	7.0	3
63	Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. European Journal of Immunology, 2001, 31, 2476-2486.	1.6	87
64	Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunology, 2001, 2, 1032-1039.	7.0	933
65	Self-antigen presentation by thymic stromal cells: a subtle division of labor. Current Opinion in Immunology, 2000, 12, 179-186.	2.4	120
66	Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nature Medicine, 2000, 6, 56-61.	15.2	355
67	Promiscuous expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity?. Journal of Molecular Medicine, 2000, 78, 483-494.	1.7	92
68	CD4 T Cell Tolerance to Human C-reactive Protein, an Inducible Serum Protein, Is Mediated by Medullary Thymic Epithelium. Journal of Experimental Medicine, 1998, 188, 5-16.	4.2	151
69	Selection of a Broad Repertoire of CD4+ T Cells in H-2Ma0/0 Mice. Immunity, 1997, 7, 187-195.	6.6	115
70	A filarial cysteine protease inhibitor down-regulates T cell proliferation and enhances interleukin-10 production. European Journal of Immunology, 1997, 27, 2253-2260.	1.6	137
71	Clonal deletion of major histocompatibility complex class I-restricted CD4+CD8+ thymocytesin vitro is independent of the CD95 (APO-1/Fas) ligand. European Journal of Immunology, 1995, 25, 2996-2999.	1.6	21
72	Tolerance and immunity to the inducible self antigen C-reactive protein in transgenic mice. European Journal of Immunology, 1995, 25, 3489-3495.	1.6	18

#	Article	IF	CITATIONS
73	Presentation and intercellular transfer of self antigen within the thymic microenvironment: expression of the Eα peptide-l-Ab complex by isolated thymic stromal cells. International Immunology, 1994, 6, 1949-1958.	1.8	36
74	Tolerance induction by clonal deletion of CD4+8+ thymocytes in vitro does not require dedicated antigen-presenting cells. European Journal of Immunology, 1993, 23, 669-674.	1.6	101
75	Identical forms of the CD2 antigen expressed by mouse T and B lymphocytes. European Journal of Immunology, 1989, 19, 1509-1512.	1.6	29
76	CD4+ helper T cells are required for resistance to a highly metastatic murine tumor. European Journal of Immunology, 1987, 17, 1863-1866.	1.6	54
77	Composition of the lymphoid cell populations from omental milky spots during the immune response in C57BL/Ka mice. European Journal of Immunology, 1986, 16, 1029-1032.	1.6	41
78	Autoimmune interaction measured in a postlabelling microcytostasis assay. Journal of Immunological Methods, 1979, 25, 1-11.	0.6	0